Antimicrobial prescribing and clinical outcomes in patients with COVID-19 infection: Experience of a single center in an upper middle-income country

Main Article Content


Antimicrobial, Prescribing, COVID-19, Infection, Jordan


Objectives: The aim of this study was to describe antimicrobial prescribing patterns in hospitalized adult patients with confirmed diagnosis of COVID-19 infection, and to determine the relationship between antimicrobial agent used and non-survival amongst the studied COVID-19 patients. Methods: This is an observational, retrospective study. Specialty Clinic Hospital in Jordan is selected as the study setting for this conducted study. The study comprised of all hospitalized adult patients with confirmed diagnosis of COVID-19 infection who were admitted to the hospital between October 2020 and December 2020. Findings: A total of 216 hospitalized patients with confirmed COVID-19 were included in the analysis. The majority of patients were prescribed antibiotic agents (n=149, 69.0%). Almost half of the patients have been prescribed antivirals agent (n=111, 51.4%). Survivals were significantly more likely to have been prescribed third generation cephalosporin (19.8% vs 3.4%, p=0.02). Non-survivals were significantly more likely to be older in age (mean age: 70.5 vs 62.7 years, p=0.009), have higher mean Charleston Comorbidity Index Score (3.7 vs 2.7, p=0.01), have at least one comorbidity (93.1% vs 71.1%, p=0.008), had shortness of breath at admission (72.4% vs 50.8%, p=0.023) and were admitted to the ICU during current admission (96.6% vs 18.7%, p<0.001) compared to survivors. Non-survivals were significantly more likely to had increased levels of WBC count (41.4% vs 19.7%; p=0.034), increased neutrophiles count (72.4% vs 39.4%; p=0.004) and higher mean C-reactive protein (167.2 vs 103.6; p=0.001) at admission. Conclusions: The results of this study demonstrated factors are associated with the non-survival, and additionally benchmarked the mortality rate, amongst the studied COVID 19 patients.

Abstract 462 | pdf Downloads 603


1. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua Liu Xing Bing XueZaZhi. 2020;41(2):145-151. https://doi:10.3760/cma.j.issn.0254-6450.2020.02.003
2. World Health Organization (WHO). Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. WHO. 2020;16(1):9-26. ttps://
3. Abelenda-Alonso G, Padullés A, Rombauts A, et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern.Infect Control HospEpidemiol. 2020;41(11):1371-1372. https://doi:10.1017/ice.2020.381
4. Huttner BD, Catho G, Pano-Pardo JR, et al. COVID-19: don’t neglect antimicrobial stewardship principles! ClinMicrobiol Infect 2020;26(7):808-10.
5. Beović B, Doušak M, Ferreira-Coimbra J, et al. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J Antimicrob Chemother. 2020;75(11):3386-3390. https://doi:10.1093/jac/dkaa326
6. Nanshan Chen, Min Zhou, Xuan Dong, et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet. 2020;395(10223):507-513.
7. Cao J, Tu WJ, Cheng W, et al. Clinical Features and Short-term Outcomes of 102 Patients with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):748-755. https://doi:10.1093/cid/ciaa243
8. Goncalves Mendes Neto A, Lo KB, Wattoo A, et al. Bacterial infections and patterns of antibiotic use in patients with COVID-19. J Med Virol. 2021;93(3):1489-1495.
9. Stevens RW, Jensen K, O’Horo JC, et al. Antimicrobial prescribing practices at a tertiary-care center in patients diagnosed with COVID-19 across the continuum of care. Infect Control HospEpidemiol. 2021;42(1):89-92. https://doi:10.1017/ice.2020.370
10. Khamis F, Al-Zakwani I, Al Naamani H, et al. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: An experience from Oman. J Infect Public Health. 2020;13(7):906-13.
11. Grasselli G, Zangrillo A, Zanella A, et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581. https://doi:10.1001/jama.2020.5394
12. Wang R, Pan M, Zhang X, et al. Epidemiological and clinical features of 125 Hospitalized Patients with COVID-19 in Fuyang, Anhui, China. Int J Infect Dis. 2020;95:421-428. https://doi:10.1016/j.ijid.2020.03.070
13. Li LQ, Huang T, Wang YQ, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. JMed Virol. 2020;92(6):577-583. https://doi:10.1002/jmv.25757
14. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. EurJ Clin Invest. 2020;50(10): e13362. https://doi:10.1111/eci.13362
15. de Almeida-Pititto B, Dualib PM, Zajdenverg L, et al. Brazilian Diabetes Society Study Group (SBD). Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. DiabetolMetabSyndr. 2020 Aug 31; 12:75. https://doi:10.1186/s13098-020-00586-4
16. Gold MS, Sehayek D, Gabrielli S, et al. COVID-19 and comorbidities: a systematic review and meta-analysis. Postgrad Med.2020;132(8):749-755. https://doi:10.1080/00325481.2020.1786964
17. Potere N, Valeriani E, Candeloro M, et al. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Crit Care. 2020;24(1):389. https://doi:10.1186/s13054-020-03022-1
18. Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020;92(10):1875-1883. https://doi:10.1002/jmv.26050
19. Malik P, Patel U, Patel K, et al. Obesity a predictor of outcomes of COVID-19 hospitalized patients-A systematic review and meta-analysis. J Med Virol. 2021;93(2):1188-1193. https://doi:10.1002/jmv.26555
20. Schurz H, Salie M, Tromp G, et al. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics. 2019;13(1):2. https://doi:10.1186/s40246-018-0185-z
21. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by aClinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. https://doi:10.1016/j.cell.2020.02.052
22. Sanchis-Gomar F, Lavie CJ, Mehra MR, et al. Obesity and Outcomes in COVID-19: When an Epidemic and Pandemic Collide. Mayo Clin Proc. 2020;95(7):1445-1453. https://doi:10.1016/j.mayocp.2020.05.006
23. Messerli FH, Bangalore S, Bavishi C, et al. Angiotensin-Converting Enzyme Inhibitors in Hypertension: To Use or Not to Use? JAm CollCardiol. 2018;71(13):1474-1482. https://doi:10.1016/j.jacc.2018.01.058
24. Danser AHJ, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is NoEvidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020;75(6):1382-1385. https://doi:10.1161/HYPERTENSIONAHA.120.15082
25. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin IIreceptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605-10. https://doi:10.1161/CIRCULATIONAHA.104.510461
26. Patanavanich R, Glantz SA. Smoking Is Associated with COVID-19 Progression: A Meta-analysis. Nicotine Tob Res.2020;22(9):1653-1656. https://doi:10.1093/ntr/ntaa082
27. Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. J Med Virol. 2020;92(10):1915-1921. https://doi:10.1002/jmv.25889
28. Karanasos A, Aznaouridis K, Latsios G, et al. Impact of Smoking Status on Disease Severity and Mortality of Hospitalized Patients with COVID-19 Infection: A Systematic Review and Meta-analysis. Nicotine Tob Res. 2020;22(9):1657-1659. https://doi:10.1093/ntr/ntaa107
29. Reddy RK, Charles WN, Sklavounos A, et al. The effect of smoking on COVID-19 severity: A systematic review and metaanalysis.J Med Virol. 2021;93(2):1045-1056. https://doi:10.1002/jmv.26389
30. Farsalinos K, Barbouni A, Niaura R. Systematic review of the prevalence of current smoking among hospitalized COVID-19
patients in China: could nicotine be a therapeutic option? Intern Emerg Med. 2020;15(5):845-852. https://doi:10.1007/s11739-020-02355-7
31. Farsalinos K, Bagos PG, Giannouchos T, et al. Smoking prevalence among hospitalized COVID-19 patients and its associationwith disease severity and mortality: an expanded re-analysis of a recent publication. Harm Reduct J. 2021;18(1):9. https://doi:10.1186/s12954-020-00437-5
32. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Latin American Network of Coronavirus Disease2019-COVID-19 Research (LANCOVID-19). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. https://doi:10.1016/j.tmaid.2020.101623
33. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis.J Infect. 2020;81(2): e16-e25. https://doi:10.1016/j.jinf.2020.04.021
34. Kiss S, Gede N, Hegyi P, et al. Early changes in laboratory parameters are predictors of mortality and ICU admission in patients with COVID-19: a systematic review and meta-analysis. Med MicrobiolImmunol. 2021;210(1):33-47. https://doi:10.1007/s00430-020-00696-w
35. Yang L, Jin J, Luo W, et al. Risk factors for predicting mortality of COVID-19 patients: A systematic review and meta-analysis.
PLoS One. 2020;15(11): e0243124. https://doi:10.1371/journal.pone.0243124
36. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. ClinMicrobiol Infect. 2021;27(4):520-531. https://doi:10.1016/j.cmi.2020.12.018
37. Wong CKH, Wong JYH, Tang EHM, et al. Clinical presentations, laboratory and radiological findings, and treatments for 11,028 COVID-19 patients: a systematic review and meta-analysis. Sci Rep. 2020;10(1):19765. https://doi:10.1038/s41598-020-74988-9
38. Giri M, Puri A, Wang T, et al. Comparison of clinical manifestations, pre-existing comorbidities, complications andtreatm ent modalities in severe and non-severe COVID-19 patients: A systemic review and meta-analysis. SciProg.2021;104(1):368504211000906. https://doi:10.1177/00368504211000906 
39. Obireddy Sreekanth Reddy, Wing‐Fu Lai. Tackling COVID‐19 Using Remdesivir and Favipiravir as Therapeutic Options.
Chembiochem. 2021;22(6):939-948.
40. Joshi S, Parkar J, Ansari A, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021;102:501-508. https://doi:10.1016/j.ijid.2020.10.069

Most read articles by the same author(s)