Unlocking the potential: Exploring antimicrobial properties in Asteraceae, Apiaceae, and Rosaceae plant species from Kazakhstan

Main Article Content

Baiken Baimakhanova
Amankeldi Sadanov
Irina Ratnikova
Gul Baimakhanova
Aibat Ibraimov
Zere Turlybaeva
Assya Balgimbaeva
Zhanar Nurgaliyeva
Roza Seisebayeva
Kulniyazova Gulshat
Kapassov Sarzhan
Aknur Turgumbayeva
Gulnaz Seitimova
Zhanserik Shynykul
Erik Shorabaev

Keywords

Medicinal plants, stress factors, conservation, sustainability, aquaponics, drug development

Abstract

Kazakhstan's rich botanical landscape harbors a treasure trove of medicinal knowledge and practices, deeply rooted in its terrain and cultural heritage. This review explores the diverse flora of Kazakhstan, highlighting the country's vibrant phytobiota and the significant role of traditional healing methods within Kazakh society. Despite the abundant botanical resources, there remains a lack of comprehensive understanding regarding the biochemical composition of most plants, as well as a scarcity of information about the synthesis regulation of biologically active compounds. Moreover, the absence of sufficient pharmaceutical infrastructures exacerbates the underutilization of Kazakhstan's diverse plant life as a source of valuable bioactive compounds. Among the various plant families, Asteraceae, Apiaceae and Rosaceae are extensively studied, with research focusing on the antimicrobial and phytochemical properties of select species. This exploration underscores the potential of these plant families in medicine and phytochemistry, highlighting the need for further research to unlock their therapeutic treasures. Overall, this review emphasizes the importance of bridging traditional knowledge with contemporary scientific research to fully utilize Kazakhstan's botanical resources for medicinal purposes and beyond.

Abstract 87 | PDF Downloads 34

References

1. Berganayeva, G.; Kudaibergenova, B.; Litvinenko, Y.; Nazarova, I.; Sydykbayeva, S.; Vassilina, G.; Izdik, N.; Dyusebaeva, M. Medicinal Plants of the Flora of Kazakhstan Used in the Treatment of Skin Diseases. Molecules 2023, 28, 4192. doi.org/10.3390/molecules28104192
2. Jumagaliyeva, K.V.; Sarmurzina, N.; Kairgalieva, G.K. History of traditional medicine of the Kazakh people. J. Samara Sci. Cent. RAS Hist. Sci. 2020, 1, 117–126. (In Russian) [Google Scholar] [CrossRef]
3. Cowan, M.M. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999, 12(4), 564–582. doi:10.1128/CMR.12.4.564.
4. Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms. 2021, 9(10), 2041. doi:10.3390/microorganisms9102041.
5. Sarsenbayev, K.N. Medicinally Important Plants of Kazakhstan. In Vegetation of Central Asia and Environs, 1st ed.; Egamberdieva, D.; Öztürk, M.; Springer: 2018, 263–289. doi:10.1007/978-3-319-99728-5_10.
6. Grudzinskaya, L.; Gemejiyeva, N.; Karzhaubekova, Z. The Kazakhstan medicinal flora survey in a leading families volume. Bulletin of the Karaganda University. Biology, Medicine, Geography Series, 2020, 100(4), 39–51. doi.org/10.31489/2020bmg4/39-51.
7. Grudzinskaya, L.; Gemejiyeva, N.; Karzhaubekova, Z.; Nelina, N. Botanical coverage of the leading families of medicinal flora of Kazakhstan. BIO Web of Conferences, 2021, 31, 00007. doi.org/10.1051/bioconf/20213100007.
8. Kotukhov, Y.A. Supplement to the “Flora of Kazakhstan”. Grasses of East Kazakhstan. Turczaninowia, 2021, 24(2), 156–169. doi.org/10.14258/turczaninowia.24.2.15
9. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20(3), 200–216. doi.org/10.1038/s41573-020-00114-z.
10. Sheth, B.P.; Thaker, V.S. Plant systems biology: insights, advances and challenges. Planta, 2014, 240(1), 33–54. doi.org/10.1007/s00425-014-2059-5.
11. Gou, J.; Lu, Y.; Xie, M.; et al. Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria. Heliyon. 2023, 9(4), e14985. doi:10.1016/j.heliyon.2023.e14985.
12. Stefanovic, O.; Comic, L.; Stanojevic, D.; Sukdolak, S.S. Antibacterial Activity of Aegopodium podagraria L. Extracts and Interaction Between Extracts and Antibiotics. Turkish Journal of Biology. 2009, 33(2), https://doi.org/10.3906/biy-0810-21
13. Canan, K.; Ayse, N.Y.; N. Ulku, K.Y. Evaluation of antimicrobial properties of Achillea L. flower head extracts. Pharmaceutical Biology. 2009, 47(1), 86–91, DOI:10.1080/13880200802448682
14. Meng, J.C.; Hu, Y.F.; Chen, J.H.; Tan, R.X. Antifungal highly oxygenated guaianolides and other constituents from Ajania fruticulosa. Phytochemistry. 2001, 1141–1145, ISSN 0031-9422, https://doi.org/10.1016/S0031-9422(01)00389-2
15. Babotă, M.; Mocan, A.; Vlase, L.; Crișan, O.; Ielciu, I.; Gheldiu, A.M.; Vodnar, D.C.; Crișan, G.; Păltinean, R. Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers. Molecules. 2018, 23(2), 409. doi:10.3390/molecules23020409.
16. Prakash, C.; Gupta, B.; Dutta, D.; Pant, P.; Joshi, D.R.L. In vitro antibacterial activity of Artemisia annua Linn. growing in India. 2009, Retrieved from: https://www.greenpharmacy.info/index.php/ijgp/article/view/96
17. Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane, O.Z.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; Giesy, J.P.; Guemmouh, R. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules. 2022, 27(3), 1136. doi:10.3390/molecules27031136.
18. Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules. 2021, 26(10), 3061. doi:10.3390/molecules26103061.
19. Ürgeová, E.; Uváčková, Ľ.; Vaneková, M.; Maliar, T. Antibacterial Potential of Microwave-Assisted Extraction Prepared Hydrolates from Different Salvia Species. Plants (Basel). 2023, 12(6), 1325. doi:10.3390/plants12061325.
20. Umam, K.; Feng, C.S.; Yang, G.; Tu, P.C.; Lin, C.Y.; Yang, M.T.; Kuo, T.F.; Yang, W.C.; Tran, N.M.H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel). 2023, 10(6), 633. doi:10.3390/bioengineering10060633.
21. Abioye, O.E.; Akinpelu, D.A.; Okoh, A.I. Synergistic Effects of n-Hexane Fraction of Parkia biglobosa (Jacq.) Bark Extract and Selected Antibiotics on Bacterial Isolates. Sustainability. 2017, 9, 228. https://doi.org/10.3390/su9020228
22. Wang, X.J.; Luo, Q.; Li, T.; et al. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. Hortic Res. 2022, 9. doi:10.1093/hr/uhac076
23. Zhong, A.; Shen, P.; Sun, Y.; Feng, J.; Zhu, J.; Li, L.; Wu, Z.; Zang, H. Chemical composition and biological evaluation of the essential oil of the flowering aerial parts of Aegopodium alpestre Ledeb. Nat Prod Res. 2023, 1–6. doi:10.1080/14786419.2023.2286605
24. Stefanovic, O.; Comic, L.; Stanojevic, D.; Sukdolak, S.S. Antibacterial Activity of Aegopodium podagraria L. Extracts and Interaction Between Extracts and Antibiotics. Turkish Journal of Biology. 2009, 33(2), https://doi.org/10.3906/biy-0810-21
25. Nurzyńska-Wierdak, R. Chemical Diversity, Yield, and Quality of Aromatic Plants. Agronomy. 2023, 13(6), 1614. https://doi.org/10.3390/agronomy13061614
26. Zabka, M. Antifungal Efficacy and Convenience of Krameria lappacea for the Development of Botanical Fungicides and New Alternatives of Antifungal Treatment. Agronomy. 2022, 12(11), 2599. https://doi.org/10.3390/agronomy12112599
27. Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Jahan, S.; Sultana, S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. J Ethnopharmacol. 2010, 128, 322–335.
28. Altuner, E.M.; Çetin, B.; Çökmüş, C. Antimicrobial activity of Tortella tortulosa (Hedw.) Limpr. Extracts. Kastamonu University Journal of Forestry Faculty. 2010, 10, 111–116.
29. Hocine, L.; Yasmina, H.; Soizic, P.; Nacira, B.; Salah, A.; Gurdip, S.; Pratibha, S.; Valery, A.; Lech, S. Chemical composition and antimicrobial activity of essential oil of Bupleurum montanum and B. plantagineum. Natural Product Communications. 2009, 4, 1605–1610.
30. Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J Biol Med. 2017, 90(1), 135–145.
31. Ogawara, H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules. 2019, 24(19), 3430. doi:10.3390/molecules24193430
32. Hsieh, Y.C.; Lin, Y.C.; Huang, Y.C. Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality. Medicine (Baltimore). 2016, 95(41), e5060.
33. Kılınç, S.; Tunç, T.; Pazarcı, Ö.; Sümer, Z. Research into biocompatibility and cytotoxicity of daptomycin, gentamicin, vancomycin and teicoplanin antibiotics at common doses added to bone cement. Jt Dis Relat Surg. 2020, 31(2), 328–334.
34. Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases E-book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019.
35. Chassagne, F.; Samarakoon, T.; Porras, G.; et al. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front Pharmacol. 2021, 11, 586548.
36. Wu, X.; Li, W.; Qin, Z.; et al. Traditional Chinese medicine as an adjunctive therapy for mild and common COVID-19: A systematic review and network meta-analysis. Medicine (Baltimore). 2021, 100(40), e27372.
37. Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J Biol Med. 2017, 90(1), 135–145.
38. Ogawara, H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules. 2019, 24(19), 3430.
39. Hsieh, Y.C.; Lin, Y.C.; Huang, Y.C. Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality. Medicine (Baltimore). 2016, 95(41), e5060.
40. Kılınç, S.; Tunç, T.; Pazarcı, Ö.; Sümer, Z. Research into biocompatibility and cytotoxicity of daptomycin, gentamicin, vancomycin and teicoplanin antibiotics at common doses added to bone cement. Jt Dis Relat Surg. 2020, 31(2), 328–334.
41. Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases E-book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019.
42. Mazandarani, M.; Mirdeilami, S.Z.; Pessarakli, M. Essential oil composition and antibacterial activity of Achillea millefolium L. from different regions in North east of Iran. Journal of Medicinal Plants Research. 2013, 7(16), 1063–1069.
43. Marcelina, S.; Strzępek-Gomółka, K.; Gaweł-Bęben, K.; Kukula-Koch, W. Achillea Species as Sources of Active Phytochemicals for Dermatological and Cosmetic Applications. Oxidative Medicine and Cellular Longevity. 2021, Article ID 6643827.
44. Canan, K.; Ayse, N.Y.; N. Ulku, K.Y. Evaluation of antimicrobial properties of Achillea L. flower head extracts. Pharmaceutical Biology. 2009, 47(1), 86–91.
45. Meng, J.C.; Hu, Y.F.; Chen, J.H.; Tan, R.X. Antifungal highly oxygenated guaianolides and other constituents from Ajania fruticulosa. Phytochemistry. 2001, 1141–1145.
46. Babotă, M.; Mocan, A.; Vlase, L.; Crișan, O.; Ielciu, I.; Gheldiu, A.M.; Vodnar, D.C.; Crișan, G.; Păltinean, R. Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers. Molecules. 2018, 23(2), 409.
47. Prakash, C.; Gupta, B.; Dutta, D.; Pant, P.; Joshi, D.R.L. In vitro antibacterial activity of Artemisia annua Linn. growing in India. 2009.
48. Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane, O.Z.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; Giesy, J.P.; Guemmouh, R. Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules. 2022, 27(3), 1136.
49. Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules. 2021, 26(10), 3061.
50. Ürgeová, E.; Uváčková, Ľ.; Vaneková, M.; Maliar, T. Antibacterial Potential of Microwave-Assisted Extraction Prepared Hydrolates from Different Salvia Species. Plants (Basel). 2023, 12(6), 1325.
51. Umam, K.; Feng, C.S.; Yang, G.; Tu, P.C.; Lin, C.Y.; Yang, M.T.; Kuo, T.F.; Yang, W.C.; Tran, N.M.H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel). 2023, 10(6), 633.
52. Abioye, O.E.; Akinpelu, D.A.; Okoh, A.I. Synergistic Effects of n-Hexane Fraction of Parkia biglobosa (Jacq.) Bark Extract and Selected Antibiotics on Bacterial Isolates. Sustainability. 2017, 9, 228.
53. Wang, X.J.; Luo, Q.; Li, T.; et al. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. Hortic Res. 2022, 9.
54. Zhong, A.; Shen, P.; Sun, Y.; Feng, J.; Zhu, J.; Li, L.; Wu, Z.; Zang, H. Chemical composition and biological evaluation of the essential oil of the flowering aerial parts of Aegopodium alpestre Ledeb. Nat Prod Res. 2023, 1–6.
55. Stefanovic, O.; Comic, L.; Stanojevic, D.; Sukdolak, S.S. Antibacterial Activity of Aegopodium podagraria L. Extracts and Interaction Between Extracts and Antibiotics. Turkish Journal of Biology. 2009, 33(2).
56. Nurzyńska-Wierdak, R. Chemical Diversity, Yield, and Quality of Aromatic Plants. Agronomy. 2023, 13(6), 1614.
57. Zabka, M. Antifungal Efficacy and Convenience of Krameria lappacea for the Development of Botanical Fungicides and New Alternatives of Antifungal Treatment. Agronomy. 2022, 12(11), 2599.
58. Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Jahan, S.; Sultana, S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. J Ethnopharmacol. 2010, 128, 322–335.
59. Altuner, E.M.; Çetin, B.; Çökmüş, C. Antimicrobial activity of Tortella tortulosa (Hedw.) Limpr. Extracts. Kastamonu University Journal of Forestry Faculty. 2010, 10, 111–116.
60. Hocine, L.; Yasmina, H.; Soizic, P.; Nacira, B.; Salah, A.; Gurdip, S.; Pratibha, S.; Valery, A.; Lech, S. Chemical composition and antimicrobial activity of essential oil of Bupleurum montanum and B. plantagineum. Natural Product Communications. 2009, 4, 1605–1610.
61. Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J Biol Med. 2017, 90(1), 135–145.
62. Ogawara, H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules. 2019, 24(19), 3430.
63. Hsieh, Y.C.; Lin, Y.C.; Huang, Y.C. Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality. Medicine (Baltimore). 2016, 95(41), e5060.
64. Kılınç, S.; Tunç, T.; Pazarcı, Ö.; Sümer, Z. Research into biocompatibility and cytotoxicity of daptomycin, gentamicin, vancomycin and teicoplanin antibiotics at common doses added to bone cement. Jt Dis Relat Surg. 2020, 31(2), 328–334.
65. Mazandarani, M.; Mirdeilami, S.Z.; Pessarakli, M. Essential oil composition and antibacterial activity of Achillea millefolium L. from different regions in North east of Iran. Journal of Medicinal Plants Research. 2013, 7(16), 1063–1069.
66. Marcelina, S.; Strzępek-Gomółka, K.; Gaweł-Bęben, K.; Kukula-Koch, W. Achillea Species as Sources of Active Phytochemicals for Dermatological and Cosmetic Applications. Oxidative Medicine and Cellular Longevity. 2021, Article ID 6643827.
67. Canan, K.; Ayse, N.Y.; N. Ulku, K.Y. Evaluation of antimicrobial properties of Achillea L. flower head extracts. Pharmaceutical Biology. 2009, 47(1), 86–91.
68. Meng, J.C.; Hu, Y.F.; Chen, J.H.; Tan, R.X. Antifungal highly oxygenated guaianolides and other constituents from Ajania fruticulosa. Phytochemistry. 2001, 1141–1145.
69. Babotă, M.; Mocan, A.; Vlase, L.; Crișan, O.; Ielciu, I.; Gheldiu, A.M.; Vodnar, D.C.; Crișan, G.; Păltinean, R. Phytochemical Analysis, Antioxidant and Antimicrobial Activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. Flowers. Molecules. 2018, 23(2), 409.
70. Prakash, C.; Gupta, B.; Dutta, D.; Pant, P.; Joshi, D.R.L. In vitro antibacterial activity of Artemisia annua Linn. growing in India. 2009.
71. Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane, O.Z.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.M.; Giesy, J.P.; Guemmouh, R.; Antioxidant and Antimicrobial Activities of Chemically-Characterized Essential Oil from Artemisia aragonensis Lam. against Drug-Resistant Microbes. Molecules. 2022, 27(3), 1136. doi:10.3390/molecules27031136.
72. Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A.; Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules. 2021, 26(10), 3061. doi:10.3390/molecules26103061. PMID: 34065533; PMCID: PMC8160890.
73. Ürgeová, E.; Uváčková, Ľ.; Vaneková, M.; Maliar, T.; Antibacterial Potential of Microwave-Assisted Extraction Prepared Hydrolates from Different Salvia Species. Plants (Basel). 2023, 12(6), 1325. doi:10.3390/plants12061325.
74. Umam, K.; Feng, C.S.; Yang, G.; Tu, P.C.; Lin, C.Y.; Yang, M.T.; Kuo, T.F.; Yang, W.C.; Tran, N.M.H.; Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel). 2023, 10(6), 633. doi:10.3390/bioengineering10060633. PMID: 37370564; PMCID: PMC10295440.
75. Abioye, O.E.; Akinpelu, D.A.; Okoh, A.I.; Synergistic Effects of n-Hexane Fraction of Parkia biglobosa (Jacq.) Bark Extract and Selected Antibiotics on Bacterial Isolates. Sustainability 2017, 9, 228. https://doi.org/10.3390/su9020228
76. Wang, X.J.; Luo, Q.; Li, T.; et al.; Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. Hortic Res. 2022, 9. doi:10.1093/hr/uhac076
77. Zhong, A.; Shen, P.; Sun, Y.; Feng, J.; Zhu, J.; Li, L.; Wu, Z.; Zang, H.; Chemical composition and biological evaluation of the essential oil of the flowering aerial parts of Aegopodium alpestre Ledeb. Nat Prod Res. 2023, 1–6. doi:10.1080/14786419.2023.2286605.
78. Stefanovic, O.; Comic, L.; Stanojevic, D.; Sukdolak, S.S.; Antibacterial Activity of Aegopodium podagraria L. Extracts and Interaction Between Extracts and Antibiotics. Turkish Journal of Biology. 2009, 33(2), https://doi.org/10.3906/biy-0810-21
79. Nurzyńska-Wierdak, R.; Chemical Diversity, Yield, and Quality of Aromatic Plants. Agronomy. 2023, 13(6), 1614. https://doi.org/10.3390/agronomy13061614
80. Zabka, M.; Antifungal Efficacy and Convenience of Krameria lappacea for the Development of Botanical Fungicides and New Alternatives of Antifungal Treatment. Agronomy. 2022, 12(11), 2599. https://doi.org/10.3390/agronomy12112599
81. Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Jahan, S.; Sultana, S.; Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. J Ethnopharmacol. 2010, 128, 322–335.
82. Altuner, E.M.; Çetin, B.; Çökmüş, C.; Antimicrobial activity of Tortella tortulosa (Hedw.) Limpr. Extracts. Kastamonu University Journal of Forestry Faculty. 2010, 10, 111–116.
83. Hocine, L.; Yasmina, H.; Soizic, P.; Nacira, B.; Salah, A.; Gurdip, S.; Pratibha, S.; Valery, A.; Lech, S.; Chemical composition and antimicrobial activity of essential oil of Bupleurum montanum and B. plantagineum. Natural Product Communications. 2009, 4, 1605–1610.
84. Zeng, Q.; Jin, H.Z.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Liu, J.H.; Yan, L.; Chen, M.; Zhang, W.D.; Chemical constituents of plants from the genus Saussurea and their biological activities. Chem Biodivers. 2014, 11(7), 1023–1049.
85. Ahmed, A.; Khan, A.; Manzoor, S.; Antimicrobial activity of selected medicinal plants from Pakistan. J Med Plants Res. 2013, 7, 279–285.
86. Burt, S.; Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004, 94, 223–253.
87. Dorman, H.J.D.; Deans, S.G.; Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000, 88, 308–316.
88. Hammer, K.A.; Carson, C.F.; Riley, T.V.; Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999, 86, 985–990.
89. Kalemba, D.; Kunicka, A.; Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003, 10, 813–829.
90. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M.; Biological effects of essential oils – A review. Food Chem Toxicol. 2008, 46, 446–475.
91. Cowan, M.M.; Plant products as antimicrobial agents. Clin Microbiol Rev. 1999, 12(4), 564–582.
92. Ríos, J.L.; Recio, M.C.; Medicinal plants and antimicrobial activity. J Ethnopharmacol. 2005, 100, 80–84.
93. Cushnie, T.P.T.; Lamb, A.J.; Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005, 26, 343–356.
94. Daglia, M.; Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012, 23, 174–181.
95. Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M.; Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 2013, 19, 256–265.
96. Gibbons, S.; Anti-staphylococcal plant natural products. Nat Prod Rep. 2004, 21, 263–277.
97. Lewis, K.; Ausubel, F.M.; Prospects for plant-derived antibacterials. Nat Biotechnol. 2006, 24, 1504–1507.
98. Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M.; Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 2008, 15, 639–652.
99. Edewor, T.I.; Owa, S.O.; Odugbemi, T.O.; Antibacterial activity of crude extracts of some medicinal plants on multidrug resistant bacteria. Afr J Med Med Sci. 2013, 42, 57–65.
100. Silva, N.C.C.; Fernandes Júnior, A.; Biological properties of medicinal plants: a review of their antimicrobial activity. J Venom Anim Toxins Incl Trop Dis. 2010, 16, 402–413.
101. Nostro, A.; Papalia, T.; Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov. 2012, 7, 28–35.
102. Bassolé, I.H.N.; Juliani, H.R.; Essential oils in combination and their antimicrobial properties. Molecules. 2012, 17, 3989–4006.
103. Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A.; Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 2014, 40, 76–94.
104. Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E.; Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J. 2014, 8, 6–14.
105. Kavanaugh, N.L.; Ribbeck, K.; Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol. 2012, 78, 4057–4061.
106. Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M.; Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 2017, 43, 668–689.
107. Bassolé, I.H.N.; Juliani, H.R.; Essential oils in combination and their antimicrobial properties. Molecules. 2012, 17, 3989–4006.
108. Hyldgaard, M.; Mygind, T.; Meyer, R.L.; Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012, 3, 12.
109. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M.; Biological effects of essential oils – A review. Food Chem Toxicol. 2008, 46, 446–475.
110. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V.; Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013, 6, 1451–1474.
111. Shen, Y.; Liang, W.J.; Shi, Y.N.; Kennelly, E.J.; Zhao, D.K.; Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat Prod Rep. 2020, 37(6), 763–796.
112. Sartelli, M.; Labricciosa, F.M.; Barbadoro, P.; Pagani, L.; Ansaloni, L.; Brink, A.J.; Carlet, J.; Khanna, A.; Chichom-Mefire, A.; Coccolini, F.; The Global Alliance for Infections in Surgery: Defining a model for antimicrobial stewardship—Results from an international cross-sectional survey. World J Emerg Surg. 2017, 12, 34.
113. Karp, B.E.; Engberg, J.; Comment on: Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004, 54, 273–274.
114. Larsson, D.J.; Antibiotics in the environment. Upsala J Med Sci. 2014, 119, 108–112.
115. Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M.; Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm. 2015, 41(6), 989–994.
116. Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K.; Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem Biol Drug Des. 2013, 81(4), 484–490.
117. Hochfellner, C.; Evangelopoulos, D.; Zloh, M.; Wube, A.; Guzman, J.D.; McHugh, T.D.; et al.; Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. J Appl Microbiol. 2015, 118(4), 864–872.
118. WHO; Antimicrobial resistance: global report on surveillance. World Health Organization. 2014.
119. Ventola, C.L.; The antibiotic resistance crisis: part 1: causes and threats. P T. 2015, 40, 277–283.
120. Prestinaci, F.; Pezzotti, P.; Pantosti, A.; Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015, 109, 309–318.
121. Fair, R.J.; Tor, Y.; Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014, 6, 25–64.
122. Lomovskaya, O.; Watkins, W.J.; Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol. 2001, 3, 225–236.
123. Stavri, M.; Piddock, L.J.V.; Gibbons, S.; Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother. 2007, 59, 1247–1260.
124. Tegos, G.P.; Haynes, M.; Strouse, J.J.; Khan, M.M.T.; Bologa, C.G.; Oprea, T.I.; Sklar, L.A.; Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des. 2011, 17, 1291–1302.
125. Pages, J.M.; Amaral, L.; Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta. 2009, 1794, 826–833.
126. Li, X.Z.; Nikaido, H.; Efflux-mediated drug resistance in bacteria. Drugs. 2009, 69, 1555–1623.
127. Poole, K.; Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005, 56, 20–51.
128. Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V.; Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015, 13, 42–51.
129. Munita, J.M.; Arias, C.A.; Mechanisms of antibiotic resistance. Microbiol Spectr. 2016, 4(2).
130. Davies, J.; Davies, D.; Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010, 74, 417–433.
131. Levy, S.B.; Marshall, B.; Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004, 10, S122–S129.
132. WHO; Global action plan on antimicrobial resistance. World Health Organization. 2015.
133. O’Neill, J.; Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. 2016.
134. Laxminarayan, R.; Sridhar, D.; Blaser, M.; Wang, M.; Woolhouse, M.; Achieving global targets for antimicrobial resistance. Science. 2016, 353, 874–875.
135. Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V.; Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016, 387, 176–187.
136. Prestinaci, F.; Pezzotti, P.; Pantosti, A.; Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015, 109, 309–318.

Most read articles by the same author(s)