Hepatocyte nuclear factor 4, alpha (HNF4A): A potential biomarker for chronic hypoxia in MCF7 breast cancer cell lines
Main Article Content
Keywords
Hypoxia, hepatocyte, HNF4A, Breast
Abstract
Introduction: Hypoxia mediates cancer hallmarks and results from low oxygen levels due to irregularities in tumor vascularization or when the bulk of the tumor prevents oxygen diffusion and stimulates angiogenesis to compensate for low oxygen. Aims: This study aims to identify significant biomarkers associated with tumor hypoxia, focusing on prolonged exposure to hypoxic conditions. Methods: The breast cancer cells (MCF7) were exposed to 8-hour hypoxic episodes (1% oxygen) three times per week for 60 episodes and once weekly for 72 hours for a maximum of 12 episodes. After 60 and 12 episodes of hypoxia, changes in gene expression were profiled using a hypoxia RT- PCR array and compared to normoxic cells. An assay was performed after 60 and 12 episodes of hypoxia to determine the effect of hypoxia on angiogenesis migration. Results: The expression of the Hepatocyte Nuclear Factor 4 gene increased by 32.71-fold following exposure to 12 hypoxic injections and by an additional 14.95-fold following exposure to 60 hypoxic injections. After twelve episodes of hypoxia, the capacity for cell migration increased. Conclusions: This study provides empirical support for the notion that cellular exposure to prolonged durations of hypoxia, specifically three months, induces expression changes distinct from those induced by fleeting durations of hypoxia, which are less than weeks and hours. The study hypothesized that HNF4A could serve as a viable biomarker for tumor hypoxia and a major contributor to the response of MCF7 breast cancer cells to protracted hypoxic conditions.
References
Journal of Molecular Sciences. 2023;24(3):2086.
2. Zhang C, Hu X, Jin L, et al. Strategic Design of Conquering Hypoxia in Tumor for Advanced Photodynamic Therapy. Advanced
Healthcare Materials. 2023:2300530.
3. Nguyen AT, Kim H-K. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors.
Pharmaceutics. 2023;15(7):1840.
4. Nguyen AT, Kim H-K. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia
Tumors. International Journal of Molecular Sciences. 2023;24(13):10552.
5. Kim Y, Lin Q, Glazer PM, Yun Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med. May
2009;9(4):425-34. doi:10.2174/156652409788167113 6. Chen L, Lyu Y, Zhang X, et al. Molecular imaging: design mechanism and bioapplications. Science China Chemistry.
2023;66(5):1336-1383.
7. Bayer C, Shi K, Astner ST, Maftei CA, Vaupel P. Acute versus chronic hypoxia: why a simplified classification is simply not
enough. Int J Radiat Oncol Biol Phys. Jul 15 2011;80(4):965-8. doi:10.1016/j.ijrobp.2011.02.049
8. Lundgren K, Holm C, Landberg G. Hypoxia and breast cancer: prognostic and therapeutic implications. Cell Mol Life Sci. Dec
2007;64(24):3233-47. doi:10.1007/s00018-007-7390-6
9. Liu Q, Palmgren VA, Danen EH, Le Dévédec SE. Acute vs. chronic vs. intermittent hypoxia in breast Cancer: a review on its
application in in vitro research. Molecular biology reports. 2022;49(11):10961-10973.
10. McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. Bmj. Sep 9
2000;321(7261):624-8. doi:10.1136/bmj.321.7261.624
11. Lv L, Zhao B, Kang J, Li S, Wu H. Trend of disease burden and risk factors of breast cancer in developing countries and territories,
from 1990 to 2019: Results from the Global Burden of Disease Study 2019. Frontiers in Public Health. 2023;10:1078191.
12. Gatenby RA, Smallbone K, Maini PK, et al. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast
cancer. Br J Cancer. Sep 3 2007;97(5):646-53. doi:10.1038/sj.bjc.6603922
13. Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. Jan 2002;2(1):38-47. doi:10.1038/nrc704
14. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. Nov 2006;70(5):1469-80. doi:10.1124/mol.106.027029
15. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. Oct 2003;3(10):721-32. doi:10.1038/nrc1187
16. Moon EJ, Brizel DM, Chi JT, Dewhirst MW. The potential role of intrinsic hypoxia markers as prognostic variables in cancer.
Antioxid Redox Signal. Aug 2007;9(8):1237-94. doi:10.1089/ars.2007.1623
17. Li J, Shi M, Cao Y, et al. Knockdown of hypoxia-inducible factor-1alpha in breast carcinoma MCF-7 cells results in reduced tumor
growth and increased sensitivity to methotrexate. Biochem Biophys Res Commun. Apr 21 2006;342(4):1341-51. doi:10.1016/j.
bbrc.2006.02.094
18. Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J. Molecular aspects of tumour hypoxia. Mol Oncol.
Jun 2008;2(1):41-53. doi:10.1016/j.molonc.2008.03.006
19. Bando H, Toi M, Kitada K, Koike M. Genes commonly upregulated by hypoxia in human breast cancer cells MCF-7 and MDAMB-
231. Biomed Pharmacother. Oct 2003;57(8):333-40. doi:10.1016/s0753-3322(03)00098-2
20. Alqawi O, Wang HP, Espiritu M, Singh G. Chronic hypoxia promotes an aggressive phenotype in rat prostate cancer cells. Free
Radic Res. Jul 2007;41(7):788-97. doi:10.1080/10715760701361531
21. Takacova M, Bartosova M, Skvarkova L, et al. Carbonic anhydrase IX is a clinically significant tissue and serum biomarker
associated with renal cell carcinoma. Oncol Lett. Jan 2013;5(1):191-197. doi:10.3892/ol.2012.1001
22. Hogarty MD, Norris MD, Davis K, et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in
neuroblastoma. Cancer Res. Dec 1 2008;68(23):9735-45. doi:10.1158/0008-5472.Can-07-6866
23. Corn PG, Ricci MS, Scata KA, et al. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Mycinduced
apoptosis. Cancer Biol Ther. Nov 2005;4(11):1285-94. doi:10.4161/cbt.4.11.2299
24. Yang J, Ledaki I, Turley H, et al. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y
Acad Sci. Oct 2009;1177:185-97. doi:10.1111/j.1749-6632.2009.05027.x
25. Muth M, Theophile K, Hussein K, Jacobi C, Kreipe H, Bock O. “Hypoxia-induced down-regulation of microRNA-449a/b impairs
control over targeted SERPINE1 (PAI-1) mRNA - a mechanism involved in SERPINE1 (PAI-1) overexpression”. J Transl Med. Apr
1 2010;8:33. doi:10.1186/1479-5876-8-33
26. Hamdan FH, Zihlif MA. Gene expression alterations in chronic hypoxic MCF7 breast cancer cell line. Genomics. Dec 2014;104(6
Pt B):477-81. doi:10.1016/j.ygeno.2014.10.010
27. Xiang X, Zhao X, Qu H, et al. Hepatocyte nuclear factor 4 alpha promotes the invasion, metastasis and angiogenesis of
neuroblastoma cells via targeting matrix metalloproteinase 14. Cancer Lett. Apr 10 2015;359(2):187-97. doi:10.1016/j.
canlet.2015.01.008
28. Ord JJ, Agrawal S, Thamboo TP, et al. An investigation into the prognostic significance of necrosis and hypoxia in high grade and
invasive bladder cancer. J Urol. Aug 2007;178(2):677-82. doi:10.1016/j.juro.2007.03.112
29. Parks SK, Cormerais Y, Pouysségur J. Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol. Apr 15
2017;595(8):2439-2450. doi:10.1113/jp273309
30. Sweet R, Paul A, Zastre J. Hypoxia induced upregulation and function of the thiamine transporter, SLC19A3 in a breast cancer
cell line. Cancer Biol Ther. Dec 1 2010;10(11):1101-11. doi:10.4161/cbt.10.11.13444
31. Berra E, Ginouvès A, Pouysségur J. The hypoxia‐inducible‐factor hydroxylases bring fresh air into hypoxia signalling. EMBO
reports. 2006;7(1):41-45.
32. Zhang Y, Liu Q, Wang F, et al. Melatonin antagonizes hypoxia-mediated glioblastoma cell migration and invasion via inhibition
of HIF-1α. J Pineal Res. Sep 2013;55(2):121-30. doi:10.1111/jpi.12052
33. Wei L, Song XR, Sun JJ, Wang XW, Xie L, Lv LY. Lysyl oxidase may play a critical role in hypoxia-induced NSCLC cells invasion and
migration. Cancer Biother Radiopharm. Dec 2012;27(10):672-7. doi:10.1089/cbr.2012.1241
34. Fraser HM, Lunn SF, Kim H, Erickson GF. Insulin-like growth factor binding protein-3 mRNA expression in endothelial cells of the
primate corpus luteum. Hum Reprod. Aug 1998;13(8):2180-5. doi:10.1093/humrep/13.8.2180 35. Huang RL, Teo Z, Chong HC, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of
intercellular VE-cadherin and claudin-5 clusters. Blood. Oct 6 2011;118(14):3990-4002. doi:10.1182/blood-2011-01-328716
36. Sugano M, Nagasaka T, Sasaki E, et al. HNF4α as a marker for invasive mucinous adenocarcinoma of the lung. Am J Surg Pathol.
Feb 2013;37(2):211-8. doi:10.1097/PAS.0b013e31826be303