Novel C7 anisidinoquinolones with advantageous antibacterial activity in nanoscale concentrations against standard and resistant bacterial strains

Main Article Content

Somia M. ElSheikhi https://orcid.org/0000-0001-6169-9570
Rula M. Darwish https://orcid.org/0000-0003-2359-676X
Yusuf Al-Hiari https://orcid.org/0000-0003-4416-9193
Violet Kasabri https://orcid.org/0000-0003-1927-0193
Mohammed A. F. Salih https://orcid.org/0000-0003-1306-046X

Keywords

fluoroquinolones, synergism, MRSA, Escherichia coli, Staphylococcus aureus

Abstract

Background The extensive clinical use of Fluoroquinolones (FQs) led to the development of bacterial resistance against these agents. In this work, new lipophilic FQs were designed, prepared and screened against standard and resistant bacteria. A series of novel 7-substituted anilino-8-nitroFQ acids 3 (a-e), their reduced derivatives 4 (a-e) and their triazolo 5 (a-c) were successfully prepared, identified and characterized using NMR, and MS. FQs 3-5(a-e) were then evaluated for the in vitro antibacterial activity against standard and resistant gram-positive and gram-negative strains using serial dilution method. Combination between the new FQs and different classes of antibiotics were also tested for possible synergistic effect using checkerboard technique. Results The outcomes of the new FQs showed comparable and superior activity against both the standard strains S.aureus and E.coli with remarkable activity against the standard S.aureus strain. The reduced series 4 were the most active group among all derivatives with nanogram concentrations for 4d (60 ng/mL) and 4e (15 ng/mL) against the standard gram positive strain. Our compounds revealed appreciable or comparable MIC mean values to standard against resistant gram-positive strains (MRSA) with no inhibitory activity against gram-negative strains (MDR E.coli). The hydroxyl derivatives 6 have showed the strongest MIC mean values among all compounds. Combination of these compounds with bacitracin, ampicillin and cephalexin showed synergistic effect with fractional inhibitory concentration (FIC) index between 0.185-0.375. While combinations with erythromycin, neomycin and tetracycline showed indifference effect with FIC index 2. Conclusions Evidently increasing number of hydrogen bond acceptor/donor leads to significant increase in activity presented by compounds 4e and 6e. These findings would open the floor for these novel antibacterial agents to be used alone or in combinations with conventional antibiotics for treatment of pathogenic bacteria.

Abstract 194 | PDF Downloads 135

References

1 (a).Snow LC, Warner RG, Cheney T, et al. Risk factors associated with extended spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales. Preventive Veterinary Medicine 2012; 106(3-4):225-234.
http://doi.org/10.1016/j.prevetmed.2012.03.009; (b).Tokajian S. New epidemiology of Staphylococcus aureus infectionsin the Middle East. Clinical Microbiology and Infection 2014; 20(7): 624–628. http://doi.org/10.1111/1469-0691.1269; (c).
Wardyn SE, Forshey BM, Farina SA, et al. Swine Farming Is a Risk Factor for Infection With and High Prevalence of Carriage of Multidrug-Resistant Staphylococcus aureus. Clinical Infectious Diseases 2015; 61(1):59-66. http://doi.org/10.1093/cid/civ234;
(d). Santman-Berends IMGA, Gonggrijp MA, Hage JJ, et al. Prevalence and risk factors for extended-spectrum β-lactamase or AMPC-producing Escherichia coli in organic dairy herds in the Netherlands. Journal of Dairy Science 2017; 100(1):562–571.
http://doi.org/10.3168/jds.2016-11839; (e). Sreeramoju P, Porbandarwalla NS, Arango J, et al. Recurrent skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus requiring operative debridement. American Journal of Surgery
2011; 201(2):216-220. http://doi.org/ 10.1016/ j.amjsurg.2009.12.024; (f). Wu G, Day MJ, Mafura MT, et al. Comparative Analysis of ESBL-Positive Escherichia coli isolates from Animals and Humans from the UK, The Netherlands and Germany. PLoSONE 2013; 8(9): e75392. http://doi.org/ 10.1371/ journal.pone.0075392
2 (a). Huang Y, Ogutu JO, Gu J, et al. Comparative analysis of quinolone resistance in clinical isolates of Klebsiella pneumoniae and Escherichia coli from Chinese children and adults. BioMed Research International 2015; 2015:168292. http://doi.
org/10.1155/2015/168292; (b). Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillinresistant Staphylococcus aureus, United States, 1999-2005. Emerging Infectious Diseases 2007; 13(12):1840-1846. http://
doi.org/10.3201/eid1312.070629; (c). Klein EY, Sun L, Smith DL, Laxminarayan R. The changing epidemiology of methicillinresistant Staphylococcus aureus in the United States: a national observational study. American Journal of Epidemiology 2013;177(7):666-674. http://doi.org/10.1093/aje/kws273.
3 (a). Zigmond J, Pecen L, Hajek P, et al. MRSA infection and colonization rates in Africa and the Middle East: a systematicreview and meta-analysis. F1000Posters 5:170; International Journal of Infectious Diseases 2014; 21(S1):391. https://doi.
org/10.1016/j.ijid.2014.03.1227; (b). Goyal N, Miller A, Tripathi M, et al. Methicillin-resistant Staphylococcus aureus (MRSA). Bone Joint Journal 2013; 95-B(1):4-9. http://doi.org/ 10.1302/0301-620X.95B1.27973; (c). Leibler JH, León C, Cardoso LJP, et al. Prevalence and risk factors for MRSA nasal colonization among persons experiencing homelessness in Boston, MA. Journalof Medical Microbiology 2017; 66(8):1183-1188. http://doi.org/10.1099/ jmm.0.000552.
4 (a). Dorado-García A, Mevius DJ, Jacobs JJ, et al. Quantitative assessment of antimicrobial resistance in livestock during the course of a nationwide antimicrobial use reduction in the Netherlands. Journal of Antimicrobial Chemotherapy 2016; 71(12):3607-3619. http://doi.org/10.1093/jac/dkw308; (b). Gonggrijp MA, Santman-Berends IMGA, Heuvelink AE, et al. Prevalence
and risk factors for extended-spectrum β-lactamase- and AMPC-producing Escherichia coli in dairy farms. Journal of Dairy Science 2016; 99(11): 9001-9013. http://doi.org/10.3168/jds.2016-11134; (c). Carmo LP, Nielsen LR, da Costa PM, et al. Exposure assessment of extended-spectrum beta-lactamases/AmpC beta-lactamases-producing Escherichia coli in meat in Denmark. Infection Ecology & Epidemiology 2014; 4. http://doi.org/10.3402/iee.v4.22924
5 (a). Odds FC. Synergy, antagonism, and what the chequer board puts between them. Journal of Antimicrobial Chemotherapy
2003; 52(1):1. http://doi.org/10.1093/jac/dkg301; (b). McGowan JE. Jr. Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. American Journal of Medicine 2006; 119(6):S29-S36. http://doi.org/10.1016/j.amjmed.2006.03.014; (c). Schmid A, Hörmansdorfer S, Messelhäusser U, Käsbohrer et al. Prevalence of extended-spectrum
β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Applied and Environmental Microbiology 2013; 79(9):3027-3032. http://doi.org/10.1128/AEM.00204-13.
6 Bolon MK. The newer Fluoroquinolones. Infectious Disease Clinics of North America 2009; 23:1027-1051. http://doi. org/10.1016/ j.idc.2009. 06.003.
7 (a). Abu-Sini M, Mayyas A, Al-Karablieh N, et al. Synthesis of 1,2,3-Triazolo[4,5-h]quinolone Derivatives with Novel Anti-Microbial Properties against Metronidazole Resistant Helicobacter pylori. Molecules 2017; 22(5): 841. http://doi.org/10.3390/molecules22050841; (b). Abu-Qatouseh L, Abu-Sini M, Mayyas A, et al. Synthesis of New Nitrofluoroquinolone Derivatives with Novel Anti-Microbial Properties against Metronidazole Resistant H. pylori. Molecules 2017; 22(1): 71. http://doi.org/10.3390/ molecules22010071; (c). Al-Hiari YM, Shakya AK, Al-Rajab WJ, et al. Antimicrobial screening of novel N-4- fluorophenylquino-[7,8-b] [1 ,4]- benzodiazepin-3 carboxylic acid derivatives. Revue Roumaine De Chimie 2015; 60(9):899 -905; (d)LaxminarayanR, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infectious Diseases 2013 and 2014;13(12):1057-1098. http://doi.org/ 10.1016/S1473-3099(13)70318-9. Erratums 14(1):11 and 14(3): 182
8 (a). Shoaa AR. Compounds with Antibacterial and Antiparasitic Properties. PCT International Application WO 2001036408 A1, CAN 2001; 135:5534; (b). Stahlmann R, Lode H. Fluoroquinolones in the elderly: safety considerations. Drugs Aging 2003;20(4): 289-302. http://doi.org/ 10.2165/00002512-200320040-00005 
9 (a). Qaisi AMA, Al-Hiari YMA, Zahra JAY, et al. Preparation of quinolones and pyridoquinoxalinones as antibacterials, European Patent Application No. 06 252 509.2, University of Jordan and European patent office; 45pp. Published on Scifinder 2006 (EP1721898 A1 20061115); (b). Al-Hiari Y, Al-Mazari I, Shakya A, et al. Synthesis and Antibacterial Properties of New 8-Nitro
fluoroquinolones Derivatives. Molecules 2007; 12:1240-1258. http://doi.org/10.3390/12061240; (c). Al-Hiari Y, Quandil A, Al-Zoubi R, et al. 7- (3-Chlorophenylamino)-1- cyclopropyl-6-fluoro-8-nitro-4-oxo-1, 4-dihydroquinoline-3-carboxylic acid. Molbank 2010; 699:1-3. http://doi.org/10.3390/ M669; (d). Al-Hiari YM, Shakya AK, Alzweiri MH, et al. Synthesis and
antibacterial properties of new N4-acetylated hexahydro-2, 7-dioxopyrido [2, 3-f] quinoxaline-8-carboxylic acids. Journal of Enzyme Inhibition and Medicinal Chemistry 2011; 26(5): 649-656; http://doi.org/10.3109/14756366.2010.543421; (e). Al-Hiari YM, Qandil AM, Al-Zoubi RM, et al. Synthesis and antibacterial activity of novel 7-halo anilino-8-nitrofluoroquinolone
derivatives. Medicinal Chemistry Research 2012; 21(8):1734-1740. https://doi.org/10.1007/s00044-011-9692-3
10 National Committee for Clinical Laboratory Standards (NCCLS): Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard, 5th edn. M7-A5; 2000; 20(2): replaces M7-A4; 17(2) 
11 Meletiadis J, Pournaras S, Roilides E, et al. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungaldrug combinations against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy 2010; 54: 602–609. http://doi.org/10.1128/AAC.00999-09
12 AlAbsi Y, AlHiari Y, Kasabri V, et al. In vitro modulation of pancreatic lipase and proliferation of obesity related colotrectal cancer cell line panel by novel synthetic fluoroquinolones. Revue Roumaine De Chimie 2018; 63(12):1123-1134
13 (a). Chattaway MA, Jenkins C, Ciesielczuk H, et al. Evidence of evolving extraintestinal enteroaggregative Escherichia coli ST38 clone. Emerging Infectious Diseases 2014; 20(11): 1935-1937. http://doi.org/10.3201/eid2011.131845; (b). Shehadeh
M, Suaifan G, Darwish RM, et al. Knowledge, attitudes and behavior regarding antibiotics use and misuse among adults in the community of Jordan. A pilot study. Saudi Pharmaceutical Journal 2012; 20(2):125-133. http://doi.org/ 10.1016/j.jsps. 2011.11.005
14 (a). Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Annals of the New York Academy of Sciences 2015; 1354(1): 12-31. http://doi.org/10.1111/nyas.12830; (b). Hordijk J, Wagenaar JA, Kant A, et al. Cross-Sectional Study on Prevalence and Molecular Characteristics of Plasmid Mediated ESBL/AmpC-Producing Escherichia coli Isolated from Veal
Calves at Slaughter. PLoS ONE 2013; 8(5):e65681. http://doi.org/10.1371 /journal.pone.0065681
15 (a). Darwish RM, Aburjai T, Al-Khalil S, et al. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus. Journal of Ethnopharmacology 2002; 79(3):359-364. http://doi.org/10.1016/s0378-8741(01)00411-1; (b). Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as
antibiotic resistant inhibitors on Escherichia coli. BMC Complementary and Alternative Medicine 2010; 10:9. http://doi.org/10.1186/1472-6882-10-9; (c). Koga H, Itoh A, Murayama S, Suzue S, et al. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. Journal of Medicinal Chemistry 1980;
23(12):1358-1363. http://doi.org/10.1021/jm00186a014
16 (a). Mitscher LA. Bacterial Topoisomerase Inhibitors: Quinolone and Pyridone Antibacterial Agents. Chemical Reviews 2005; 105:559-592. http://doi.org/10.1021/cr030101q; (b). Chai Y, Wan Z-L, Wang B, et al. Synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-amino-3-methylpiperidin-1-yl) fluoroquinolones derivatives. European Journal of Medicinal Chemistry
2009; 44:4063- 4069. http://doi.org/ 10.1016/j.ejmech.2009.04.041 
17 (a). Da Silva AD, Almeida MV, Souza MVN, et al. Biological Activity and Synthetic Methodologies for the Preparation of Fluoroquinolones, A class of Potent Antibacterial Agents. Current Medicinal Chemistry 2003; 10:21-39. http://doi.org/10.2174/ 09298670 33368637; (b). Foroumadi A, Emami S, Mehni M, et al. Synthesis and antibacterial activity of N-[2-(5-
bromothiophen-yl)-2-oxoethyl] and N-[(2-5 bromothiophen-2-yl)-2-Oximinoethyl] derivatives of piperazinyl quinolones.Bioorganic & Medicinal Chemistry Letters 2005a; 15(20): 4536-4539. http://doi.org/10.1016/ j.bmcl. 2005.07.005; (c).Foroumadi A, Emami S, Mehni M, et al. Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorganic & Medicinal Chemistry Letters 2005b; 15(20): 4536-4539. http://doi.org/ 10.1016/j.bmcl.2005.07.005; (d). Foroumadi A, Ghodsi S, Emami S, et al. Synthesis and antibacterial activity of new fluoroquinolones containing a substituted N-(phenethyl)piperazine moiety. Bioorganic &
Medicinal Chemistry Letters 2006; 16(13): 3499-503. http://doi.org/10.1016/j.bmcl.2006.03.103.