Feasibility of clinical pharmacist-led CYP2C19 genotyping for patients receiving non-emergent cardiac catheterization in an integrated health system

Main Article Content


Pharmacogenetics, Genetic Testing, Pharmacists, Patient Acceptance of Health Care, Platelet Aggregation Inhibitors, Acute Coronary Syndrome, Cytochrome P-450 CYP2C19, United States


Objective: To assess the feasibility of clinical pharmacist-led CYP2C19 genotype-guided P2Y12 inhibitor antiplatelet drug therapy recommendations to cardiologists in an outpatient cardiology practice. 

Methods: This was a prospective, open-labeled, single-arm study conducted in an integrated healthcare delivery system between March 1, 2013 and January 23, 2014. Patients requiring non-emergent cardiac catheterization were included.  A clinical pharmacist provided interpretation and recommendations from genotyping results. The feasibility of implementing CYP2C19 genotype-guided antiplatelet therapy was assessed by the: 1) percentage of patients approached who consented to CYP2C19 genotyping, 2) percentage of patients with CYP2C19 genotyping results available prior to cardiac catheterization, and 3) percentage of clinical pharmacist CYP2C19 genotype-based antiplatelet recommendations accepted by cardiologists.

Results: Of the 43 patients identified for potential recruitment, 22 of these were eligible for study enrollment and 6 (27%) patients consented and received CYP2C19 genotyping. All patients had genotyping results available prior to catheterization and all clinical pharmacists’ antiplatelet therapy recommendations were accepted by the patients’ cardiologists. Three patients had the CYP2C19 wild-type (*1/*1) genotype and the clinical pharmacist recommended clopidogrel therapy. CYP2C19 variant genotypes (i.e., *1/*2, *1/*17, and *2/*17) were found in the other three patients; alternative antiplatelet therapy was recommended for the patient with the *1/*2 genotype, while clopidogrel was recommended for those with *1/*17 and *2/*17 genotypes. 

Conclusion: A relatively small proportion of patients undergoing non-emergent cardiac catheterization consented to pharmacogenetic testing; however, their cardiologists were receptive to clinical pharmacists conducting such testing and providing corresponding pharmacotherapy recommendations. Future studies should identify patient barriers to pharmacogenetic testing.

Abstract 1207 | PDF Downloads 849


1. Roden DM. Cardiovascular pharmacogenomics: The future of cardiovascular therapeutics? Can J Cardiol. 2013;29(1):58-66. doi: 10.1016/j.cjca.2012.07.845

2. Roden DM, Johnson JA, Kimmel SE, Krauss RM, Medina MW, Shuldiner A, Wilke RA. Cardiovascular pharmacogenomics. Circ Res. 2011;109(7):807-820. doi: 10.1161/CIRCRESAHA.110.230995

3. Chen R, Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med. 2013;5(1):73-82. doi: 10.1002/wsbm.1198

4. Caudle KE, Dunnenberger HM, Freimuth RR, Peterson JF, Burlison JD, Whirl-Carrillo M, Scott SA, Rehm HL, Williams MS, Klein TE, Relling MV, Hoffman JM. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19(2):215-223. doi: 10.1038/gim.2016.87

5. Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, Leeder JS, Graham RL, Chiulli DL, LLerena A, Skaar TC, Scott SA, Stingl JC, Klein TE, Caudle KE, Gaedigk A. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127-134. doi: 10.1002/cpt.147

6. Horgan D, Jansen M, Leyens L, Lal JA, Sudbrak R, Hackenitz E, Bußoff U. Ballensiefen W, Brand A. An index of barriers for the implementation of personalised medicine and pharmacogenomics in europe. Public Health Genomics. 2014;17(5-6):287-298. doi: 10.1159/000368034

7. Blankstein S. Pharmacogenomics: History, barriers, and regulatory solutions. Food Drug Law J. 2014;69(2):273-314.

8. Lam YW. Scientific challenges and implementation barriers to translation of pharmacogenomics in clinical practice. ISRN Pharmacol. 2013;2013:641089. doi: 10.1155/2013/641089

9. Ieiri I. What are barriers to pharmacogenomics (PGx) clinical uptake? Drug Metab Pharmacokinet. 2012;27(3):279. doi: 10.2133/dmpk.DMPK-12-PF-903

10. Sorich MJ, McKinnon RA. Personalized medicine: Potential, barriers and contemporary issues. Curr Drug Metab. 2012;13(7):1000-1006.

11. Schnoll RA, Shields AE. Physician barriers to incorporating pharmacogenetic treatment strategies for nicotine dependence into clinical practice. Clin Pharmacol Ther. 2011;89(3):345-347. doi: 10.1038/clpt.2010.267

12. Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, Granger CB, Lange RA, Mack MJ, Mauri L, Mehran R, Mukherjee D, Newby LK, O'Gara PT, Sabatine MS, Smith PK, Smith Jr SC. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2016;68(10):1082-1115. doi: 10.1016/j.jacc.2016.03.513

13. Samardzic J, Bozina N, Skoric B, Ganoci L, Petricevic M, Krpan M, Pasalic M, Milicic D. CYP2C19*2 genotype influence in acute coronary syndrome patients undergoing serial clopidogrel dose tailoring based on platelet function testing: Analysis from randomized controlled trial NCT02096419. Int J Cardiol. 2015;186:282-285. doi: 10.1016/j.ijcard.2015.03.171

14. Ismail S, Lee YM, Patel M, Duarte JD, Ardati AK. Genotype- and phenotype-directed antiplatelet therapy selection in patients with acute coronary syndromes. Expert Rev Cardiovasc Ther. 2014;12(11):1289-1303. doi: 10.1586/14779072.2014.970180

15. Stimpfle F, Karathanos A, Droppa M, Metzger J, Rath D, Muller K, Tavlaki E, Schaffeler E, Winter S, Schwab M, Gawaz M, Geisler T. Impact of point-of-care testing for CYP2C19 on platelet inhibition in patients with acute coronary syndrome and early dual antiplatelet therapy in the emergency setting. Thromb Res. 2014;134(1):105-110. doi: 10.1016/j.thromres.2014.05.006

16. Mega JL, Hochholzer W, Frelinger AL 3rd, Kluk MJ, Angiolillo DJ, Kereiakes DJ, Isserman S, Rogers WJ, Ruff CT, Contant C, Pencina MJ, Scirica BM, Longtine JA, Michelson AD, Sabatine MS. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. JAMA. 2011;306(20):2221-228. doi: 10.1001/jama.2011.1703

17. Pare G, Mehta SR, Yusuf S, Anand SS, Connolly SJ, Hirsh J, Simonsen K, Bhatt DL, Fox KAA, Eikelboom JW. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med. 2010;363(18):1704-1714. doi: 10.1056/NEJMoa1008410

18. Beitelshees AL, McLeod HL. Clopidogrel pharmacogenetics: Promising steps towards patient care? Arterioscler Thromb Vasc Biol. 2006;26(8):1681-1683. doi: 10.1161/01.ATV.0000232583.51472.73

19. Kelly RP, Close SL, Farid NA, Winters KJ, Shen L, Natanegara F, Jakubowski JA, Ho M, Walter JR, Small DS. Pharmacokinetics and pharmacodynamics following maintenance doses of prasugrel and clopidogrel in Chinese carriers of CYP2C19 variants. Br J Clin Pharmacol. 2012;73(1):93-105. doi: 10.1111/j.1365-2125.2011.04049.x

20. Gurbel PA, Tantry US, Shuldiner AR, Kereiakes DJ. Genotyping: one piece of the puzzle to personalize antiplatelet therapy. J Am Coll Cardiol. 2010;56(2):112-6. doi: 10.1016/j.jacc.2010.04.008

21. Sorich MJ, Vitry A, Ward MB, Horowitz JD, McKinnon RA. Prasugrel vs. clopidogrel for cytochrome P450 2C19-genotyped subgroups: Integration of the TRITON-TIMI 38 trial data. J Thromb Haemost. 2010;8(8):1678-1684. doi: 10.1111/j.1538-7836.2010.03923.x

22. Tantry US, Bliden KP, Wei C, Storey RF, Armstrong M, Butler K, Gurbel PA. First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: The ONSET/OFFSET and RESPOND genotype studies. Circ Cardiovasc Genet. 2010;3(6):556-566. doi: 10.1161/CIRCGENETICS.110.958561

23. Varenhorst C, Eriksson N, Johansson A, Barratt BJ, Hagstrom E, Akerblom A, Syvanen AC, Becker RC, James SK, Katus HA, Husted S, Steg PG, Seigbahn A, Voora D, Teng R, Storey RF, Wallentin L, PLATO Investigators. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur Heart J. 2015;36(29):1901-1912. doi: 10.1093/eurheartj/ehv116

24. Cavallari LH, IGNITE Pharmacogenetics Working Group Investigators. Prospective clinical implementation of CYP2C19-genotype guided antiplatelet therapy after PCI: A multi-site investigation of MACE outcomes in a real-world setting. Presentation at the American Heart Association scientific sessions. New Orleans, LA; 2016 Nov. available at: https://professional.heart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_489921.pdf (accessed 16-Feb-2017).

25. Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, Dick A, Marquis JF, O'Brien E, Goncalves S, Druce I, Steward A, Gollob MH, So DY. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): A prospective, randomised, proof-of-concept trial. Lancet. 2012;379(9827):1705-1711. doi: 10.1016/S0140-6736(12)60161-5

26. Ferreri SP, Greco AJ, Michaels NM, O'Connor SK, Chater RW, Viera AJ, Faruki H, McLeod HL, Roederer MW. Implementation of a pharmacogenomics service in a community pharmacy. J Am Pharm Assoc (2003). 2014;54(2):172-180. doi: 10.1331/JAPhA.2014.13033

27. Swen JJ, van der Straaten T, Wessels JA, Bouvy, ML, Vlassak EE, Assendelft WJ, Guchelaar HJ. Feasibility of pharmacy-initiated pharmacogenetic screening for CYP2D6 and CYP2C19. Eur J Clin Pharmacol. 2012;68(4):363-370. doi: 10.1007/s00228-011-1130-4

28. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, Klein TE, Sabatine MS, Johnson JA, Shuldiner AR. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317-323. doi: 10.1038/clpt.2013.105

29. Caudle KE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Relling MV, Klein TE. Evidence and resources to implement pharmacogenetic knowledge for precision medicine. Am J Health Syst Pharm. 2016;73(23):1977-1985. doi: 10.2146/ajhp150977

30. Plavix [clopidogrel] package insert. Bridgewater, NJ: Bristol-Meyer Squibb/Sanofi Pharmaceuticals Partnership; revised 2016 Sept.

31. Sweeny JM, Scott S, Zhang D, Desnick R, Sharma S, Bottinger E. Feasibility of routine CYP2C19 genotyping and platelet function testing in patients undergoing elective coronary stenting in a high-volume cardiac catheterization lab. J Am Coll Cardiol. 2012;59(13):E1408.

32. Dunnenberger HM, Biszewski M, Bell GC, Sereika A, May H, Johnson SG, Hulick PJ, Khandekar J. Implementation of a multidisciplinary pharmacogenomics clinic in a community health system. Am J Health Syst Pharm. 2016;73(23):1956-1966. doi: 10.2146/ajhp160072

33. Hicks JK, Dunnenberger HM, Gumpper KF, Haidar CE, Hoffman JM. Integrating pharmacogenomics into electronic health records with clinical decision support. Am J Health Syst Pharm. 2016;73(23):1967-1976. doi: 10.2146/ajhp160030

34. Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, Skaar TC, Muller DJ, Gaedigk A, Stingl JC, . Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93(5):402-408. doi: 10.1038/clpt.2013.2

35. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland van der Zee AH, Mulder H, Rongen GA, van Schaik RH, Schalekamp T, Touw DJ, van der Weide J, Wilffert B, Deneer VH, Guchelaar HJ. Pharmacogenetics: From bench to byte--an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662-673. doi: 10.1038/clpt.2011.34

36. Medicare and Medicaid; Electronic Health Record Incentive Program; HHS Final Rule 2010, 75 Fed Reg 144 (July 28, 2010): 44314-44588.