Original Research

Evaluation of antibiotic prescribing and treatment outcomes among paediatric patients to tertiary care hospital Ajman, United Arab Emirates.

Riham Mohamed Elshafie, Nour Elshaeir, Yelly Oktavia Sari, Syed Wasif Gillani, Hassaan A. Rathore

Received (first version): 20-May-2024 Accepted: 19-Jul-2024 Published online: 23-May-2025

Abstract

Background: Infectious diseases and antimicrobial resistance are profoundly impacted by the extensive use of antibiotics, raising significant global concerns. Objectives: This study's primary objective is to assess antibiotic usage in pediatric patients admitted to a tertiary care hospital for various infectious diseases, evaluating treatment outcomes, adverse events, de-escalation duration, and duration of hospitalization.

Methodology: A retrospective study was conducted during from January 2022 to April 2023, at a tertiary care facility in Ajman, United Arab Emirates. Data was collected by physically reviewing patients' medical records/files, with eligibility based on predefined criteria for paediatric patients with infectious diseases. Results: A total of 200 paediatric participants were included in this study. The age distribution showed that most participants fell into the age groups of 3 to 5.9 years (35.0%) and 6 to 8.9 years (29.0%), rest 36.0% aged between 9 and 12 years old. Body Surface Area (BSA) ranged from 0.40 to 1.89 m2, with the majority (61.0%) ranges in-between 0.40 - 0.89 m2. Fever was the most recorded symptom in 196 (98%) patients followed by cough (150; 75%) and sore throat (146; 73%). Among the male participants (n=68), many infections were bacterial (88.2%), followed by viral (3.8%), bacterial and viral co-infections (2.5%), and parasitic infections (1.3%). The data reveals a relatively even distribution of re-admissions within 30 days among patients on combination therapy and monotherapy, with no significant difference (p = 0.643). Conclusion: The study concluded limited practices of culture & sensitivity testing prior to initiation of antibiotic prescribing. The study also reported high success rate among the study population. The combination or monotherapy prescribing has no impact on the clinical outcomes of the study

Keywords: Infectious Disease Trends, Treatment Outcomes, paediatric patients, Antimicrobial resistance

INTRODUCTION

The burden of emerging infectious diseases (EIDs) is enormous for both public health and the world's economies^{1,2}. Admissions to general internal medical units for acute care result from a wide array of infections. The proportion of hospitalizations owing to infectious diseases (IDs) has increased, reflecting a rising trend in the burden of ID-related hospitalizations¹. Worldwide, IDs are a major cause of illness and mortality. The burden of IDs has decreased because of significant advancements in sanitation, vaccine research, and other public health initiatives. The decline in the rate of hospitalizations for all causes in the latter half of the 20th century did not, however, apply to IDs¹⁻³.

Riham Mohamed Elshafie. Pharmacy Practice Department, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia, Clinical Pharmacy Department, ASUSH, Ain Shams University, Cairo, Egypt.

Nour Elshaeir. College of Pharmacy, Gulf Medical University, Ajman, UAE

Yelly Oktavia Sari. Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia

Syed Wasif Gillani*. Associate Dean Academic, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates(UAE). dr.syedwasif@gmu.ac.ae

Hassaan A. Rathore. College of Pharmacy, QU health, Qatar University, Doha, 2713, Qatar.

Over the past 20 years, several studies have demonstrated that morbidity and mortality from IDs are linked to considerable costs and burdens on the health care system^{4,5,6}. Patients in internal medicine departments make up a complicated population, in addition to having chronic diseases, because of the range in disease severity and functional impairment^{6,7}.

Infectious disease control relies heavily on antibiotics, making it subject to frequent medication errors (MEs). Antimicrobial-resistant bacteria are a natural outcome of the extensive usage of antibiotics, increasing researchers' concern about this matter. Public health and the economy have suffered because of an increase in antimicrobial resistance and a parallel fall in the development of novel antimicrobials^{8,9}. Despite general agreement and awareness that AMR (antimicrobial resistance) poses a threat, national and international solutions are still insufficient. From the standpoint of children's health, there is insufficient surveillance data on AMR that is unique to newborn and pediatric patients, making it difficult to create evidence-based recommendations and implement effective preventative strategies¹⁰.

According to the World Health Organization (WHO), more than half of all medications are improperly supplied, distributed, or given. In India, 37% of antibiotics are being misused¹⁰. Research on children in the US and Canada indicates that 50% and 85%, respectively, of antibiotics are used improperly. According to the Antimicrobial Consume and Resistance in Australia (AURA) study, young children consume antibiotics at high rates: In

https://doi.org/10.18549/PharmPract.2025.2.3190

2014, 57% of children aged (0–4) received at least one antibiotic prescription. There aren't many additional Australian general practice studies providing pediatric-specific information to direct antimicrobial stewardship (AMS)^{11,12}. In comparison to most other countries, Australian newborns were found to have greater rates of antibiotic exposure, according to a recent population cohort study in the Barwon district of Victoria¹².

Since prescribing the appropriate antibiotic is a challenging procedure, the WHO has developed a set of basic drug use indicators that assess prescriber performance, patient knowledge and experience at healthcare facilities, and the efficiency of the healthcare workforce. This assessment will support the establishment of standards for prescription, identify issues with patients' comprehension of consultants' recommendations, and even alleviate the financial burden on them¹³. The objective of the study was to evaluate the usage of antibiotics in terms of treatment outcomes (re-admission within 30 days and therapy outcomes upon discharge), adverse events, duration of de-escalation, and duration of hospitalizations among pediatric patients admitted to a tertiary care hospital due to various infectious diseases.

MATERIALS AND METHODS

Ethical Approval

The study is approved from the Institutional Review Board (IRB) number: IRB/COP/STD/07/Jan-2023 and adhering the standards of declaration of Helsinki & Good clinical practices (GCP).

Study Design and Setting

The study design was cross-sectional retrospective observational study. All the patients who were admitted at the tertiary care hospital from Jan 2022 to Dec 2022 were enrolled to the study. The data was collected from all paediatric patients admitted during the time mentioned above. The patient medication profile was the source of the data collection. All paediatric patients admitted with infectious diseases were enrolled based on the inclusion and exclusion criteria. These settings included general paediatric ward, intensive paediatric care unit and emergency department.

Study Population

The inclusion criteria of this study serve as a foundational framework to target cohort within the paediatric population.

Inclusion Criteria:

The study focused on paediatric patients aged 3 to 12 years' old who were admitted with infectious diseases. All types of infections were included in this study to explore the patterns of antibiotics used in paediatric population.

Exclusion Criteria:

Paediatric patients older than 12 years were excluded to ensure a consistent age range within the study group, enabling a more homogenous analysis of infectious disease impacts.

The patients with non-infectious physiological diseases. Patients from paediatric cardiac wards were excluded due to their unique medical complexities. Paediatric oncology wards were omitted due to distinctive cancer-related challenges that could interfere with the study's aims.

Data Extraction

The data collection was performed in way to anonymize the patients' names and hospital numbers were used instead to secure patient privacy. Authorized login and password were created to the researcher (N.E) to avoid any unauthorised access to the data to guarantee data confidentiality. The Google Form was used to securely record all the obtained data, which was then transferred to an Excel file for analysis. However, Ministry of Health and Prevention (MOHAP) or other partner hospitals may request the use of the data only for educational purposes, publications, or other specific purposes. To safeguard the participants' privacy, patient identifiers won't be disclosed to any outside parties.

Statistical analysis

The data was analysed using the Statistical Package for Social Sciences (IBM SPSS Statistics, Version 22.0, IBM Corp., Armonk, NY, USA). The analysed data is securely stored in the College of Pharmacy office at Gulf Medical University for a period of five years. The data is presented as proportions, mean±SD, or median and range, as appropriate. To explore differences between the numerical variables, ANOVA test was used. To determine the association between variables Chi-square test was used. The P-values less than 0.05 is considered statistically significant.

RESULTS & FINDINGS

Demographic characteristics of the study participants

A total of 200 paediatric participants were included in this study. The age distribution showed that most participants fell into the age groups of 3 to 5.9 years (35.0%) and 6 to 8.9 years (29.0%), with the remaining 36.0% aged between 9 and 12 years old. The mean±SD age of the participants was 7.5±2.8 years. Gender distribution showed that 66.0% were female. Regarding race, more than half of the participants (54.0%) were Arab. Body Surface Area (BSA) ranged from 0.40 to 1.89 m², with the majority (61.0%) inbetween 0.40 - 0.89 m². The mean±SD BSA was 0.90±0.29 m². The mean±SD body weight 26.314±14.03kg, with almost 48.5% of participants in 11 - 20.9 kg category, 21.5% (21 - 30.9 kg), 15.0% (31 - 40.9 kg), and rest 15.0% weighing over 40 kilograms (Table 1).

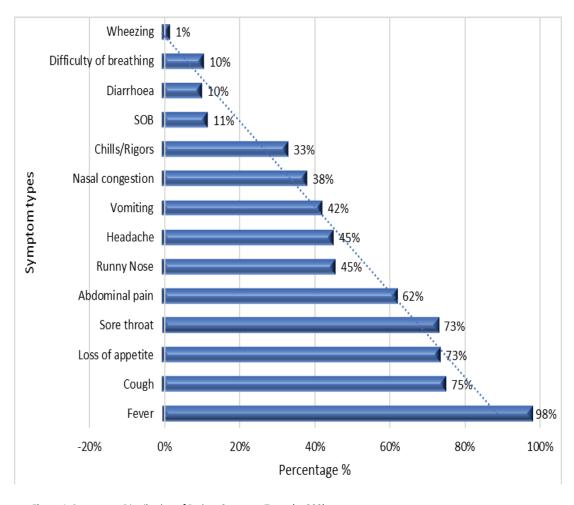
Frequency of Symptoms and adverse effects among study population

The fever was the most recorded symptom in 196 (98%) patients followed by cough (150; 75%) and sore throat (146; 73%). Wheezing was relatively rare, with only two patients (1%) experiencing it. Other reported symptoms were abdominal pain, diarrhea, and vomiting. Also, the data on the adverse effects has found that only two patients (1%) have developed

https://doi.org/10.18549/PharmPract.2025.2.3190

Table 1: Demographic Characteristics of the Study Participants (n=200)				
Demographic Information			(%)	
Age (years) group	3 – 5.9	70 (3	35.0)	
	6 – 8.9	58 (2	29.0)	
	9 – 12	72 (36.0)		
Age (mean ± SD)	7.5 ±2.8			
	Female	132 (66.0)		
Gender	Male	68 (34.0)		
Dane.	Arab	108 (54.0)		
Race	Non-Arab	92 (46.0)		
Body Surface Area (m²) (mean ± SD)	Body Surface Area (m²) (mean ± SD)			
Body weight (kg) (mean ± SD)	26.314 ±14.03			

adverse effects from the antibiotic use. The frequency of various symptoms reported in 200 patients' hospital records appears in (Figure 1).


Infection Types by Gender and Infection Subtypes

Among the male participants (n=68), majority of the reported

infections were bacterial (91.2%), followed by viral (4.41%), bacterial & viral co-infections (2.94%), and rest parasitic infections (1.47%). For female participants (n=132), majority of the reported cases were also bacterial infections (91.7%), with a lower prevalence of viral (1.5%), bacterial & viral co-infections (4.5%), and parasitic infections (2.27%). Upper respiratory tract infections were the most common infection reported in male and female patients (66.17%: 53.8%). Other infections were otitis media, gastroenteritis, urinary tract infections, and FLU A, each with varying frequencies among the genders. The distribution of infection types upon admission, categorized by gender for a total of 200 paediatric participants is presented in Table 2.

Antibiotic Categories and Antibiotic therapy pattern

Antibiotic therapy frequency was categorized into two groups: monotherapy and combination therapy. The prescribed antibiotics were classified into different categories based on the drug class; Aminoglycosides, Cephalosporin, Macrolides, Nitroimidazole, Penicillin, and Antivirals. The antibiotics prescribing patterns were significantly (p = 0.000) different among the different classes. The details of prescribing patterns of different antibiotics and frequency is presenting in Table 3.

 $\textbf{Figure 1.} \ \textbf{Percentage Distribution of Patient Symptom Types (n=200)}$

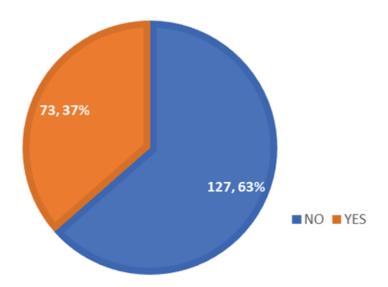


Figure 2. Prevalence of Culture Sensitivity Testing Before Antibiotic Use

Table 2 : Infection Frequency upon Admission by Gender (n=200)				
Infection information		Male (n=68) N (%)	Female (n=132) N (%)	
	Bacterial	62 (91.2)	121 (91.7)	
Type of infection	Viral	3 (4.41)	2 (1.5)	
	Bacterial and Viral	2 (2.94)	6 (4.5)	
	Parasitic	1 (1.47)	3 (2.27)	
	Upper Respiratory Tract Infection	45 (66.17)	71 (53.8)	
Main infection upon admission	Otitis Media	10 (14.7)	14 (10.08)	
	Gastroenteritis	9 (13.2)	16 (12.2)	
	Urinary Tract Infection	2 (2.94)	29 (22.1)	
	FLU A	2 (2.94)	2 (0.8)	

	Antibioti	c Therapy		P-value
Antibiotic Categories	Freque	ency (%)	Frequency of Antibiotic Therapy	
	Monotherapy	Combination		
Aminoglycoside ^a	0	5 (4.13)	5	
Cephalosporins ^b	71(51.4)	72 (59.5)	143	
Macrolide ^c	39 (28.2)	16 (13.2)	55	0.000*
Nitroimidazole ^d	0	11 (9.0)	11	
Penicillin ^e	1 (0.7)	11 (9.0)	12	
Antiviral ^f	27 (19.5)	6 (4.9)	33	-

f "Oseltamivir"

a "Amikacin" b "Cefixime" "Ceftriaxone" "Cefdinir"

c "Azithromycin" "Clarithromycin"

d "Metroimidazole"

e "Co-amoxiclav"

https://doi.org/10.18549/PharmPract.2025.2.3190

Symptoms and Different Types of Infection

Symptoms such as cough, sore throat, and diarrhea are examined in detail. The table below presents the number of cases with and without each symptom for each infection type, along with a total count. The relationship between symptoms and various types of infection, including bacterial, bacterial and viral, parasitic, and viral infections, is shown in Table 4.

Symptoms occurrence among patients admitted with different infections

Fever emerged as a significant indicator across various infections, with 121 patients exhibiting this symptom. Cough manifested prominently in 152 patients, while difficulty breathing was observed in 84 patients. Statistical analysis demonstrated noteworthy associations: fever (P < 0.001), cough (P = 0.001), and difficulty breathing (P = 0.004) with all infections. The distribution of symptoms among patients admitted with different types of infections is comprehensively detailed in Table 5.

Clinical Outcomes in Relation to Antibiotic Therapy

The data showed no significant difference in the rate of readmissions within 30 days among patients on combination therapy and monotherapy (P = 0.643). Similar rates were

observed in the clinical outcomes between the combination and monotherapy groups (P = 0.995). These findings suggests that the choice of antibiotic therapy, whether combination or monotherapy, did not appear to significantly impact short-term clinical outcomes or discharge status among the study population. The correlation between clinical outcomes and antibiotic therapy patterns is provided in (Table 6).

Culture & Sensitivity Test Before Antibiotic Use

The majority of patients 127 (approximately 63%), did not undergo C&S test. Only 73 patients (37%) had a culture & sensitivity test performed prior to antibiotic administration. The rate of culture sensitivity tests conducted before antibiotic use among the study participants is given in Figure 2.

Culture Sensitivity Testing and Clinical Outcomes

The data showed nonsignificant difference on the rate of readmission within 30 days, between those who had the test (C&S) and those who hadn't (P=0.713). However, when considering therapy outcomes upon discharge, a significant association was found (P=0.05). Specifically, a higher percentage of participants who underwent culture & sensitivity testing were discharged with antibiotics (24%), while fewer were discharged with minor symptoms (14%). (Table 7)

Symptoms associated with the type of infection		Bacterial	Bacterial & viral coinfection	Parasitic	Viral	Total	P-value
G	NO	44	2	2	2	50	0.047*
Cough	YES	136	6	0	5	147	0.017*
Total		180	8	2	7	197	
Carra thursant	NO	46	1	2	4	53	0.022*
Sore throat	YES	134	7	0	3	144	0.032*
Total		180	8	2	7	197	
5 '	NO	165	8	0	6	180	0.000*
Diarrhoea	YES	15	0	2	1	18	0.000*
Total		180	8	2	6		

Symptoms upon admission Infections upon admission									
FLU A		Gastroenteritis	Pharyngitis	Otitis media	URTI**	UTI***	Total	P-value	
Fa	NO	0	0	1	0	1	0	2	0.000*
Fever	YES	5	15	32	19	29	21	121	0.000*
Cl-	NO	1	7	8	6	10	15	47	0.004*
Cough YE	YES	5	16	25	16	72	18	152	0.001*
Difficulty of	NO	4	22	30	21	12	20	109	0.004*
Breathing	YES	3	0	5	2	70	4	84	0.004*

^{*}Significant value (P-value using Chi square test)

^{***}Urinary Tract Infection

^{**}Upper Respiratory Tract Infection

Riham M E, Nour E, Yelly O S, Syed W G, Hassaan A R. Evaluation of antibiotic prescribing and treatment outcomes among paediatric patients to tertiary care hospital Ajman, United Arab Emirates. Pharmacy Practice 2025 Apr-Jun;23(2):3190.

https://doi.org/10.18549/PharmPract.2025.2.3190

Table 6: Association between Clinica	l Outcomes and Antibiotic Therapy among st	udy populations (n=200))		
Clinical outcomes		Antibioti	c therapy	Total	D -1 -
Combination		Monotherapy		iotai	P-value
	No readmission	28	77	105	
Re-admission with 30 days	Yes, with different type of infection	13	28	41	0.643
	Yes, with same type of infection	18	36	54	
	Discharged with antibiotics	18	42	60	
Therapy Outcomes on discharge	Discharged with minor symptoms	17	41	58	0.995
	Discharged with no symptoms	24	58	82	
Total		59	141	200	

Table 7: Association between Culture Sensitivity	y Testings Prior to Antibiotic
Use and Clinical Outcomes	

ose and eminear outcomes			
Clinical outcomes	Pre-ABs Sensitiv	P-value	
	NO (%)	YES (%)	
Re-admission with 30 days			
No re-admission	67	38	
Yes, with different type of infection	24	17	
Yes, with same type of infection	36	18	0.713
Therapy Outcomes on discharge			
Discharged with antibiotics	36	24	
Discharged with minor symptoms	44	14	
Discharged with no symptoms	47	35	0.05*
Total	127	73	
*Significant value (P-value using Chi sq	uare test)		

DISCUSSION

This research revealed that a substantial number of young patients admitted to the advanced care hospital in Ajman were within the age range of 3 to 5.9 years (35.0%) and 6 to 8.9 years (29.0%). This pattern aligns with prior studies indicating a higher rate of hospitalization for infectious diseases in younger age groups¹⁴. On average, the study participants were approximately 7.5 years old, consistent with typical pediatric admissions. In terms of gender, 66.0% of the participants were female. While this gender distribution may not directly impact antibiotic prescriptions, it's crucial to consider potential gender-related differences in disease manifestation and response to treatment, as these factors could influence clinical outcomes¹⁵.

Regarding ethnicity, over half of the participants (54.0%) were identified as Arab, reflecting the ethnic composition of the UAE's population. Ethnicity can play a role in susceptibility to diseases and responses to antibiotics due to genetic factors, emphasizing the importance of considering these factors in future studies¹⁶. Two critical factors for determining antibiotic dosages are Body Surface Area (BSA) and body weight. The study found that most participants fell into the 0.40 - 0.89 m^2 BSA group and the 11 - 20.9 kg body weight group, indicating a predominance of patients with relatively smaller BSA and body

weight. Proper antibiotic administration is essential to ensure effectiveness and prevent adverse effects, highlighting the need to tailor antibiotic treatments to the specific characteristics of each patient¹⁷.

The frequency of symptoms reported among the study population revealed that fever, cough, and sore throat were the most common symptoms. Fever, in particular, was highly prevalent, affecting 98% of patients. These findings align with the typical clinical presentation of infectious diseases in pediatric patients, where fever often serves as a cardinal symptom¹⁸. However, it's crucial to consider the diverse range of symptoms, including gastrointestinal symptoms, indicating the complexity of clinical presentations in this population. Furthermore, the relatively low rate of adverse effects from antibiotic use (1%) is a positive outcome, suggesting that antibiotic therapy was generally well-tolerated. Adverse effects of antibiotics can range from mild gastrointestinal symptoms to severe allergic reactions, emphasizing the importance of monitoring and minimizing the risk of adverse effects during treatment18.

Moreover, the data suggested that a majority of the study population reported symptoms were abdominal pain, diarrhea, and vomiting. The presence of these gastrointestinal symptoms alongside respiratory symptoms underscores the diversity of clinical presentations in pediatric patients with infectious diseases. Healthcare providers need to consider these varied symptom profiles when making clinical assessments and treatment decisions. The distribution of infection types by gender highlighted that bacterial infections were predominant among both male and female participants, with upper respiratory tract infections being the most common. These findings emphasize the importance of antibiotic selection and appropriate treatment guidelines for common infections in pediatric patients¹⁹.

Clinical outcomes focused on readmission rates within 30 days of the initial admission. More than half of the participants experienced no readmission, indicating successful recovery without the need for subsequent hospitalization. However, a notable portion of patients was readmitted, either with the same infection type or a different one. These findings underscore the importance of monitoring and optimizing

Riham M E, Nour E, Yelly O S, Syed W G, Hassaan A R. Evaluation of antibiotic prescribing and treatment outcomes among paediatric patients to tertiary care hospital Ajman, United Arab Emirates. Pharmacy Practice 2025 Apr-Jun;23(2):3190.

https://doi.org/10.18549/PharmPract.2025.2.3190

treatment strategies to reduce the likelihood of readmission²⁰. The study explored the frequency of antibiotic therapy and routes of administration upon admission and discharge. Monotherapy, particularly oral administration, was the most common form of antibiotic therapy. Combination therapy, involving various routes of administration, was also observed. The choice of antibiotic therapy and route of administration should be based on the specific infection and individual patient factors²¹.

The research investigated the relationship between symptoms and various types of infection. Fever, cough, and difficulty breathing were significantly associated with multiple infection types. Understanding the symptom profiles associated with different infections can aid in early diagnosis and targeted treatment²². The occurrence of symptoms among patients admitted with different types of infections revealed significant associations between specific symptoms and infection types. Fever, cough, and difficulty breathing were found to be particularly relevant symptoms for various infections. Recognizing these associations can assist healthcare providers in making accurate clinical assessments and treatment decisions²³.

The study delved into the impact of antibiotic therapy patterns on clinical outcomes. No significant differences were observed in readmission rates or therapy outcomes upon discharge between combination therapy and monotherapy groups. This suggests that the choice of antibiotic therapy pattern may not significantly influence short-term clinical outcomes. However, long-term effects should be further explored in future studies²⁴.

CONCLUSION

The study concluded limited practices of culture & sensitivity testing prior to initiation of antibiotic prescribing. The study also reported high success rate among the study population. The combination or monotherapy prescribing has no impact on the clinical outcomes of the study. The upper respiratory tract infections (URTIs) were identified as the most reported infections among both male and female pediatric patients. The study further highlighted that cephalosporins and macrolides were the most frequently prescribed antibiotics for patients discharged with antibiotic treatment.

Based on the study's findings, the following recommendations are suggested for future research:

Multicenter Studies: Conduct multicenter prospective studies to encompass a more diverse patient population, thereby enhancing the generalizability of findings. This approach can provide a more comprehensive understanding of antibiotic therapy patterns and outcomes across different healthcare settings.

Long-Term Follow-Up: Investigate the long-term clinical outcomes and readmission rates beyond the initial 30 days. Extending the follow-up period will contribute to a more thorough assessment of the sustained impact of antibiotic therapy on patients' health and potential recurrent infections.

These recommendations aim to contribute to the refinement and expansion of knowledge in the field, fostering a more comprehensive understanding of antibiotic usage and its implications for pediatric patients.

References

- 1. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature. 2004 Jul 8;430(6996):242-9.
- 2. Institute of Medicine (US) Committee on Emerging Microbial Threats to Health in the 21st Century. Microbial Threats to Health: Emergence, Detection, and Response. Smolinski MS, Hamburg MA, Lederberg J, editors. Washington (DC): National Academies Press (US); 2003. PMID: 25057653.
- 3. Binder S, Levitt AM, Sacks JJ, Hughes JM. Emerging infectious diseases: public health issues for the 21st century. Science. 1999 May 21;284(5418):1311-3. doi:10.1126/science.284.5418.1311.
- 4. Ording AG, Sørensen HT. Concepts of comorbidities, multiple morbidities, complications, and their clinical epidemiologic analogs. Clinical epidemiology. 2013 Jul 1:199-203.
- 5. Holman RC, Folkema AM, Singleton RJ, Redd JT, Christensen KY, Steiner CA, et al. Disparities in infectious disease hospitalizations for American Indian/Alaska Native people. Public Health Rep. 2011 Jul-Aug; 126(4):508-21. doi: 10.1177/003335491112600407.
- 6. Saliba W, Fediai A, Edelstein H, Markel A, Raz R. Trends in the burden of infectious disease hospitalizations among the elderly in the last decade. European Journal of Internal Medicine. 2013; 24(6), 536-540. doi.org/10.1016/j.ejim.2013.06.002
- Nardi R, Scanelli G, Corrao S, Iori I, Mathieu G, Amatrian R C. Co-morbidity does not reflect complexity in internal medicine patients. European journal of internal medicine. 2007; 18(5), 359-368. doi.org/10.1016/j.ejim.2007.05.002
- 8. Alsulami Z, Conroy S, Choonara I. Medication errors in the Middle East countries: a systematic review of the literature. European journal of clinical pharmacology. 2013 Apr; 69:995-1008.
- 9. Mathew R, Sayyed H, Behera S, Maleki K, Pawar S. Evaluation of antibiotic prescribing pattern in pediatrics in a tertiary care hospital. Avicenna Journal of Medicine. 2021 Jan;11(01):15-9.
- 10. Ghei P. How to investigate drug use in health facilities? Selected drug use indicators: WHO publications, Geneva, 87 pp., 1993. Health Policy. 1995;34(1):73-1.
- 11. Anderson H, Vuillermin P, Jachno K, Allen KJ, Tang ML, Collier F et. al., Prevalence and determinants of antibiotic exposure in infants: A population-derived Australian birth cohort study. *Journal of paediatrics and child health*. 2017; 53(10), 942–949.

Riham M E, Nour E, Yelly O S, Syed W G, Hassaan A R. Evaluation of antibiotic prescribing and treatment outcomes among paediatric patients to tertiary care hospital Ajman, United Arab Emirates. Pharmacy Practice 2025 Apr-Jun;23(2):3190.

https://doi.org/10.18549/PharmPract.2025.2.3190

https://doi.org/10.1111/jpc.13616

- 12. Biezen R, Pollack AJ, Harrison C, Brijnath B, Grando D, Britt HC, et. al., Respiratory tract infections among children younger than 5 years: current management in Australian general practice. Medical Journal of Australia. 2015; 202(5), 262-265.
- 13. Thiruthopu NS, Mateti UV, Bairi R, Sivva D, Martha S. Drug utilization pattern in south Indian pediatric population: A prospective study. Perspect Clin Res. 2014; 5:178–83.
- 14. Freedman J, Leibovitz E, Sergienko R, Levy A. Risk factors for hospitalization at the pediatric intensive care unit among infants and children younger than 5 years of age diagnosed with infectious diseases. Pediatr Neonatol. 2023;64(2):133-139. doi: 10.1016/j.pedneo.2022.06.012.
- 15. Ruggieri A, Anticoli S, D'Ambrosio A, Giordani L, Viora M. The influence of sex and gender on immunity, infection and vaccination. Ann 1st Super Sanita. 2016;52(2):198-204. doi: 10.4415/ANN 16 02 11.
- 16. Velavan TP, Pallerla SR, Rüter J, Augustin Y, Kremsner PG, Krishna S, et. al., Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine. 2021; 72. doi:0.1016/j.ebiom.2021.103629.
- 17. Yow HY, Govindaraju K, Lim AH, Abdul Rahim N. Optimizing Antimicrobial Therapy by Integrating Multi-Omics With Pharmacokinetic/Pharmacodynamic Models and Precision Dosing. Front Pharmacol. 2022;13:915355. doi: 10.3389/fphar.2022.915355.
- 18. Marwali EM, Kekalih A, Yuliarto S, Wati DK, Rayhan M, Valerie IC, et al. Paediatric COVID-19 mortality: a database analysis of the impact of health resource disparity. BMJ Paediatrics Open 2022;6:e001657. doi: 10.1136/bmjpo-2022-001657
- 19. Gharbi M, Doerholt K, Vergnano S, Bielicki JA, Paulus S, Menson E, et. al., Using a simple point-prevalence survey to define appropriate antibiotic prescribing in hospitalised children across the UK. BMJ open. 2016; 6(11), e012675. doi: 10.1136/bmjopen-2016-012675.
- 20. Teo K, Yong CW, Chuah JH, Hum YC, Tee YK, Xia K, et al.,. Current Trends in Readmission Prediction: An Overview of Approaches. Arab J Sci Eng. 2021:1-18. doi: 10.1007/s13369-021-06040-5.
- 21. Rangchian M, Shah-Ebrahimi T, Mehrpooya M. The Sustainability of the Impact of Pharmacists' Educational Programs on the Adherence to the Recommendations of Preoperative Antibiotic Prophylaxis Guidelines. Curr Drug Saf. 2023;18(1):39-50. doi: 10.2174/1574886317999220405113744.
- 22. Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol. 2023;23(2):121-133. doi: 10.1038/s41577-022-00734-z.
- 23. Tobin DM. Modelling infectious disease to support human health. Dis Model Mech. 2022;15(8): dmm049824. doi: 10.1242/dmm.049824.
- 24. Duong QA, Pittet LF, Curtis N, Zimmermann P. Antibiotic exposure and adverse long-term health outcomes in children: A systematic review and meta-analysis. J Infect. 2022;85(3):213-300. doi: 10.1016/j.jinf.2022.01.005.

