Original Research

Assessment of intravenous to oral medications conversion practice at a UAE tertiary care hospital: A retrospective observational study

Ahmad El Ouweini 🗓, Ishaaq Aba Bagnnan, Theres Babu, Terri Levien, Diana Malaeb

Received (first version): 28-Sep-2023 Accepted: 05-May-2024 Published online: 04-Jan-2025

Abstract

Background: Many patients admitted to the hospital are initially started on intravenous (IV) medications due to their clinical conditions that necessitate only the use of the parenteral route of administration. As the patient's clinical status improves and the patient can tolerate oral intake, drugs can be converted from IV to oral (PO) form. Switching IV to PO treatment, in a timely manner, is an effective and safe approach that leads to improved rational use of medications and contributes to overall cost savings. This study aims to assess the current practices of IV to PO conversion practice in intensive care unit (ICU) settings, with regards to antibiotics, proton pump inhibitors, and acetaminophen. Methods: Retrospective, cohort study performed from October 2020 - October 2022 in a tertiary care hospital in the UAE. All patients were admitted to the ICU and had received an IV antibiotic, proton pump inhibitors or acetaminophen for more than 48 hours, were able to eat or tolerate oral formulation and enteral feeding, patients with intact gastrointestinal tract and the absence of bowel abnormalities, adequately absorbed oral medications via the oral, gastric, or nasogastric tube route. Results: Most of the study participants were admitted to infectious disease as primary diagnosis, with pneumonia being the most prevalent type of infection followed by Skin and Soft Tissue Infections (SSTIs). Beta-lactams were the most frequently prescribed antibiotic class (52.5%), followed by vancomycin (12.7%). The majority of the patients (84.7%) were able to tolerate an oral diet (either since the time of admission or later after clinical improvement), and 92.4% of them showed clinical improvement. 89% of the patients were good candidates for IV to PO switch, however, the medical team failed to do the switch. The total cost for the total duration of IV therapy was 119,400 AED (USD 32,500). Patients who were not candidates for the IV to PO switch became later able to tolerate oral diet and medications for an average of 3 days. Nevertheless, they were not switched during these days. Thus, upon calculating the costs, we found that 18,377 AED (USD 5000) could have been saved if the IV to PO switch was done timely. Conclusion: Intravenous to peroral conversion practice was infrequent. Improper IV to PO conversion practice was significantly associated with beta-lactams, acetaminophen and PPIs. Awareness of IV to PO conversion practice and short-term training for healthcare teams is vital for better IV to PO conversion practice.

Keywords: proton pump inhibitors; acetaminophen; antibiotics, intravenous; oral; cost, intensive care unit

INTRODUCTION

Many patients admitted to the hospital are initially started on intravenous (IV) medications due to their clinical conditions that necessitate only the use of the parenteral route of administration. As the patient's clinical status improves and the patient can tolerate oral intake, drugs can be converted from IV to oral (PO) form. Switching IV to PO treatment, in a timely manner, is an effective and safe approach that leads to improved rational use of medications and contributes to

Ahmad El OUWEINI*. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. dr.ahmedelouweini@gmu.ac.ae

Ishaaq Aba BAGNNAN. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. 2018ph31@ mygmu.ac.ae

Theres BABU. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. 2018ph08@mygmu.ac.ae Terri LEVIEN. College of Pharmacy and Pharmaceutical Sciences, Washington State University, Pullman, WA, United States. levient@wsu.edu

Diana MALAEB. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. dr.diana@gmu. ac.ae

overall cost savings. 1,2 Drugs with high bioavailability are good candidates for IV to PO switch. For drugs with similar plasma exposure (area under the curve (AUC) oral/AUC intravenous is 90% or more), intravenous and oral routes of the same drug at the same dose are bioequivalent.1-3 Timely IV to PO switch has major advantages for the patient that include easier ambulation and reduced risk of intravascular catheter infection due to shorter line dwell times and less endoluminal contamination. This approach also offers advantages to the healthcare professionals such as reduced preparation time and risk of needle injuries. Moreover, IV to PO switch helps the hospital and society to reduce the hospital stay, healthcare cost, and environmental waste.4-7 Additionally, a timely switch of antimicrobials is considered an easily attainable antimicrobial stewardship intervention that results in a more resourceful use of antimicrobials.^{6,8} Moreover, thousands of IV Proton Pump Inhibitors (PPIs) and Acetaminophen doses are being administered on an annual basis. Many of these IV doses were administered to patients who were candidates for oral intake or who received other medications given through the oral route and thus were eligible to receive PO medications. In a pharmacoeconomic study, using IV instead of PO PPI therapy would cost an incremental \$708,735 per year to gain one additional Quality-Adjusted Life Year in high-risk ulcer hemorrhage patients.9 After 72 hours of initial

https://doi.org/10.18549/PharmPract.2025.1.2985

stabilization in hospitalized patients, 83% of them would be needlessly administered intravenous antibiotics, resulting in a twofold increase in treatment expenses. While certain concerns exist, specific categories of antimicrobial drugs, like quinolones, maintain comparable oral bioavailability to their IV counterparts, even when administered to critically ill patients.¹⁰ Despite these facts, the overuse of IV administration, when oral formulations may be more appropriate, is highly common. 11 The primary impediment to transitioning from IV to PO antibiotic therapy lies in the misperception that intravenous treatment confers a lower risk of reinfection. Prescribing clinicians commonly initiate therapy with IV antibiotics and paracetamol, maintaining this regimen until the patient's discharge, which may impact the duration of hospitalization. Moreover, conflicting guidelines exist regarding the criteria and optimal timing for transitioning to oral antibiotics. 12-15 To the best of the investigators' knowledge, the prevalence and factors of IV to PO conversion practice were not adequately investigated in tertiary care hospitals in the UAE. This study aims to assess the current practices of IV to PO conversion practice in intensive care unit settings, with regards to antibiotics, proton pump inhibitors, and acetaminophen.

MATERIALS AND METHODS

Study Design

Retrospective, cohort study performed from October 2020 - October 2022 in a tertiary care hospital in the UAE. Eligible patient medical charts were reviewed from the ICU-admitted patients, and information was collected using a data collection sheet. Eligibility criteria included patients aged 18 and above who are admitted to the ICU and had received an IV antibiotic, proton pump inhibitors or acetaminophen for more than 48 hours, were able to eat or tolerate oral formulation and enteral feeding, patients with intact gastrointestinal tract and the absence of bowel abnormalities, adequately absorbed oral medications via the oral, gastric, or nasogastric tube route were included in the study. Patients who were on prolonged course of IV antibiotics due to certain infections such as endocarditis and osteomyelitis, unable to respond to oral medications, with grade three and above mucositis, with unstable conditions, refusing oral medications, and immunocompromized patients (febrile neutropenia on cancer chemotherapy) were excluded from this study.

Sample size calculation

Using the G-power software, a minimum sample of 297 was deemed necessary, based on a R² deviation of 5%, an alpha error of 5%, a power of 80%.

Data collection and variables

A data collection sheet was created to study the variables that were important to assess the current practice of IV to PO shift and its associated factors in the ICU. The data collection sheet was content-validated by a panel of experts including PharmD professors. Data collection was performed by a registered clinical pharmacist and last year pharmD students. A report

was extracted from the hospital's electronic medical record for all patients admitted to the ICU and an IV antibiotic, proton pump inhibitors or acetaminophen for more than 48 hours in the specified period. The data collection sheet included several sections: patient demographic characteristics, data about the primary diagnosis, indications for the IV medications, type of infection, the prescribed IV antibiotic, the estimated total cost of IV antibiotics, acetaminophen and PPIs alone and combined, the candidature status of the patient to be shifted from IV to PO, whether the IV to PO shift was done timely and the estimated total cost savgins from IV to PO shift. The appropriateness of the IV to PO switch was based on whether the switch was done for those who were candidates for the switch. The patients were considered candidates for the switch if they were able to tolerate oral diet and/or had overall clinical improvement.

Statistical analysis

IBM SPSS Statistics for Windows, version 25.0 (IBM Corp., Armonk, N.Y., USA) was used to perform the data analysis. Dichotomous and categorical variables were presented as percentages, and the continuous variables were displayed as mean±standard deviation (SD). Mean values, standard deviations, and frequencies were computed to illustrate current prescribing practices of IV to PO conversion in the intensive care unit in this tertiary care hospital. All factors that showed significance in the bivariate analysis were entered as independent variable. P <0.05 was deemed statistically significant in the final model.

RESULTS

A total of 118 patients were enrolled in this study. Table 1 provides a summary of the patients' demographic statistics, including age, BMI, gender, and primary diagnosis.

Most of the study participants were admitted to infectious disease as primary diagnosis, with pneumonia being the most prevalent type of infection followed by SSTIs.

Beta-lactams were the most frequently prescribed antibiotic class (52.5%), followed by vancomycin (12.7%). The majority of

Table 1. Sociodemographic Characteristics of Enrolled Patients			
Age, mean (±standard deviation)	32.67 (±21.93)		
BMI (±standard deviation)	28.53 (±7.84)		
Gender: Male Female	65 (55.1) 53 (44.9)		
Primary Diagnosis Infection CVD GI Others	64 (54.2) 24 (20.3) 12 (10.2) 18 (15.3)		
Type of Infection Intraabdominal Meningitis Pneumonia Sepsis SSTIs	9 (7.6) 5 (4.2) 23 (19.5) 12 (10.2) 14 (11.9)		

El Ouweini A, Bagnnan IA, Babu T, Levien T, Malaeb D. Assessment of intravenous to oral medications conversion practice at a UAE tertiary care hospital: A retrospective observational study. Pharmacy Practice. 2025 Jan-Marc;23(1):2985.

https://doi.org/10.18549/PharmPract.2025.1.2985

Table 2. Prescribed IV Medications					
Medication	No. (%)	Duration of use, days, mean (±SD)			
Antibiotics	64 (54.2)	7 (±2.5)			
Beta-lactams	62 (52.5)				
Vancomycin	15 (12.7)				
Metronidazole	9 (7.6)				
Clindamycin	2 (1.7)				
Azithromycin	6 (5.1)				
Fluoroquinolones	5 (4.2)				
Acetaminophen	65 (55.1)	4.5 (±1.2)			
PPIs	60 (50.8)	5.5 (±1.3)			

Table 3. Patients' Clinical Status with regards to IV to PO conversion				
	No. (%)			
Diet				
Tolerate PO	100 (84.7)			
Can not tolerate PO	18 (15.3)			
Clinical Improvement				
Yes	109 (92.4)			
No	9 (7.6)			
Candidate of IV to PO Switch				
Yes	92 (78)			
No	26 (22)			
Days the patient can tolerate PO, mean (±standard deviation)	3 (±1)			
Appropriateness for the switch				
Yes	13 (11)			
No	105 (89)			

the patients (84.7%) were able to tolerate an oral diet (either since the time of admission or later after clinical improvement), and 92.4% of them showed clinical improvement. 89% of the patients were good candidates for IV to PO switch, however, the medical team failed to do the switch.

As shown in table 4, the total cost for the total duration of IV therapy was 119,400 AED (USD 32,500). Patients who were not candidates for the IV to PO switch became later able to tolerate oral diet and medications for an average of 3 days. Nevertheless, they were not switched during these days. Thus, upon calculating the costs, we found that 18,377 AED (USD 5000) could have been saved if the IV to PO switch was done timely.

Bivariate analysis

As evident from table 5, primary diagnosis of infection, CVD, and GI disease was significantly associated with inappropriate IV to PO switch. Additionally, the beta-lactams class was the most significant antibiotics that is unlikely to be switched to PO when it is permissible. Similarly, acetaminophen and PPIs were significantly associated with inappropriate IV to PO switch. Other factors were not significantly associated with the appropriateness of the IV to PO switch.

DISCUSSION

The majority of hospitalized patients initially given intravenous

Table 4. Estimated Costs of Therapy		
	Amount in AED	
Total IV Antibiotic Therapy	89,100	
Total IV Acetaminophen Therapy	17,220	
Total IV PPI Therapy	13,080	
Total IV Medications Therapy	119,400	
PO Therapy if the shift was done timely	16,968	
IV Therapy Spent when the shift was not done	35,345	
Savings if the switch was done timely	18,377	

Variables	Appropriate to PO switch	P- value	
	No	Yes	
Gender			
Male	59 (90.8)	6 (9.2)	0.562
Female	46 (86.8)	7 (13.2)	
Primary Diagnosis			
Infection	63 (100)	0 (0)	< 0.001
CVD	24 (100)	0 (0)	
GI	12 (100)	0 (0)	
Others	6 (31.6)	13 (68.4)	
Type of Infection			
Intraabdominal	9 (100)	0 (0)	0.595
Meningitis	5 (100)	0 (0)	1.000
Pneumonia	23 (100)	0 (0)	0.070
Sepsis	12 (100)	0 (0)	0.357
SSTIs	14 (100)	0 (0)	0.360
Prescribed IV Medications Antibiotics			
Beta-lactams	62 (100)	0 (0)	< 0.001
Vancomycin	15 (100)	0 (0)	0.215
Metronidazole	9 (100)	0 (0)	0.595
Clindamycin	2 (100)	0 (0)	1.000
Azithromycin	6 (100)	0 (0)	1.000
Fluoroquinolones	5 (100)	0 (0)	1.000
Acetaminophen	53 (80.3)	13 (11)	< 0.001
PPIs	48 (78.3)	13 (21.3)	< 0.001
Diet			
Tolerate PO	87 (87)	13 (13)	0.214
Can not tolerate PO	18 (100)	0 (0)	
Clinical Improvement			
Yes	97 (88.2)	13 (11.8)	0.596
No	8 (100)	0 (0)	
Candidate of IV to PO Switch			
Yes	79 (85.9)	13 (14.1)	0.069
No	26 (100)	0 (0)	1

Numbers in bold indicate significant p values

medications can transition to a suitable oral form once they meet clinical stability criteria, as long as they complete the entire course of treatment. This study aimed to evaluate the current practice of conversion from IV to PO antibiotics, acetaminophen, and PPIs. The prevalence of proper IV to PO conversion practice in this study was 11% which was lower than a previous retrospective study conducted in Lebanon.¹¹ that

https://doi.org/10.18549/PharmPract.2025.1.2985

had a 26% IV to PO conversion practice, and much lower than the conversion practice in another study conducted in India showed 43.68% IV to PO conversion practice. 16 This variation in the IV to PO conversion practice appropriateness may stem from the inclusion of a smaller sample size in this study. Moreover, factors such as the accessibility of oral medications, the expertise and habits of healthcare providers, and healthcare policies play pivotal roles in influencing the practice of transitioning from intravenous to oral administration. Furthermore, being a retrospective study might have led to the missing of important information during data collection. In this study, 105 of the included patients (89%) were not switched from IV to PO. This could have contributed to complications including catheter-related adverse events, pain, infections, thombus, overhydration, among others. 17 to the patients. In UAE, it is common practice to shift patients to oral antibiotic treatment upon their discharge from the hospital, although patients must undergo 24 hours of monitoring after the switch before being discharged. Equally important is the lost money for failing to do the IV to PO conversion on a timely manner, which was estimated to be 18,377 AED (USD 5000). In fact, this amount was based on the 118 patients only who were included in the study and thus would be much higher when the sample size is larger. In addition, the showed costs in tabe 4 were only estimates of the IV medications costs and not the actual costs. The hospital procures different brands of different IV antibiotics, acetaminophen and PPIs. Hence, the cost is constantly changing. Even within the beta-lactam antibiotics class, different medications have different costs and the costs show only the average cost for all beta-lactams used in the included patient population. This outcome is confiremd from a study conducted in Michigan, which indicated that patients who had their antibiotics switched from intravenous to oral administration were able to reduce their drug expenses by \$15,000.18 In this study, In this study, beta-lactam was the most frequently prescribed antibiotics (52.5%). The reason for this finding could be the fact that most of the patients admitted for infections were diagnosed with pneumonia at the first place, followed by SSTIs, both for which beta-lactams are common empiric treatment options. One of the barriers to the timely transition from intravenous to oral treatment is the lack of familiarity with guideline recommendations, as well as misconceptions and uncertainty about expected outcomes. These challenges were similarly observed in the findings of other two studies.^{22,23} where physicians were unaware of the presence of explicit guidelines regarding the appropriate timing for the switch. Patients who were not candidates for the IV to PO switch became later able to tolerate oral diet and medications for an average of 3 days. This finding was consistent with other studies. 24,25 that that also reported the appropriate time for IV therapy to be reassessed between 3 to 4 days.

LIMITATIONS

This research has a number of limitations. To begin with, the small sample size could diminish the significance of the findings. Another drawback involves the data collection being limited to just one hospital, which constrains the generalizability of the

findings to other hospitals in other emirates. Furthermore, the retrospective study design posed a limitation by restricting prospective interactions with patients and raising the rate of missing data and accuracy of collected data. Additionally, the study team lacked access to this data because it was a retrospective study, and not all the necessary information had been documented. For example, the study team could not determine the exact cause of not converting the patients from IV to PO when they meet the criteria for the switch. Additionally, the calculated costs of IV therapy do not show the exact cost of therapy as there are variations in the hospital's formulary as indicated in the discussion section. Therefore, more actual lost costs could have been saved if a timely IV to PO shift had been done. Moreover, this study did not assess in detail the associated factors with the IV to PO conversion practice that were assessed in previous trials. 19,20 such as high temperature, tachypnea, hypotension, tachcardia, complications due to co-morbidities, although these were assessed collectively under clinical improvement. Length of stay is prolonged when inappropriate conversion of IV to PO therapy exists. ²¹ However, this outcome was not assessed in this study.

CONCLUSION

In conclusion, the findings of this study underscore the necessity for a systematic approach and well-defined protocols when prescribing IV medications and evaluating treatment decisions. This includes regularly assessing the patient's clinical condition to determine the appropriateness of transitioning from intravenous to oral therapy in everyday medical practice. Future research should aim to gauge physicians' knowledge, attitudes, and willingness to adopt such transitions, with the ultimate goal of establishing a comprehensive and effective guideline for intravenous-to-oral therapy conversion, which can then be implemented through a collaborative team approach. It's worth noting that this study, being retrospective and observational, did not measure any reduction in complications resulting from the switch from intravenous to oral therapy. This highlights the need for prospective research in the future, potentially involving pharmacists in the intervention process.

DECLARATIONS

Ethical statement

The study was approved by the Institutional Review Board of Gulf Medical University (Ref: RB/COP/FAC/73/DEC-2022).

Data Availability Statement

The database cannot be shared publicly but is available upon a reasonable request from the corresponding author.

Declaration of interests

The authors declare no conflict of interest.

Funding

This research received no external funding.

El Ouweini A, Bagnnan IA, Babu T, Levien T, Malaeb D. Assessment of intravenous to oral medications conversion practice at a UAE tertiary care hospital: A retrospective observational study. Pharmacy Practice. 2025 Jan-Marc;23(1):2985.

https://doi.org/10.18549/PharmPract.2025.1.2985

AUTHOR CONTRIBUTIONS

Conceptualization, A.E.O.; methodology, A.E.O.; validation, A.E.O., D.M. and T.L.; formal analysis, A.E.O., D.M. and T.L.; investigation, A.E.O., D.M.; resources, T.L..; data curation, A.E.O, I.B, T.B; writing—original draft preparation, A.E.O, I.B, T.B; writing—review and editing, D.M., T.L.; visualization, A.E.O, D.M.; supervision, D.M.; project administration, A.E.O., D.M. and T.L.; funding acquisition. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS

None.

ABBREVIATIONS

Intravenous (IV), Oral (PO), Proton Pump Inhibitors (PPIs), Intensive Care Unit (ICU), Body Mass Index (BMI), Skin and Soft Tissue Infections (SSTIs), Cardiovascular Diseases (CVD), Gastrointestinal (GI).

References

- 1. Cyriac JM, James E. Switch over from intravenous to oral therapy: a concise overview. J Pharmacol Pharmacother. 2014;5:83-7. https://doi.org/10.4103/0976-500x.130042
- 2. Béïque L, Zvonar R. Addressing concerns about changing the route of antimicrobial administration from intravenous to oral in adult inpatients. Can J Hosp Pharm. 2015;68:318-26. https://doi.org/10.4212/cjhp.v68i4.1472
- 3. Committee for Proprietary Medicinal Products (CPMP). Note for guidance on the investigation of bioavailability and bioequivalence. European Agency for the Evaluation of Medicinal Products 2000.
- 4. Mertz D, Koller M, Haller P, et al. Outcomes of early switching from intravenous to oral antibiotics on medical wards. J Antimicrob Chemother. 2009;64:188-99. https://doi.org/10.1093/jac/dkp131
- 5. Thompson C, Zahradnik M, Brown A, et al. The use of an IV to PO clinical intervention form to improve antibiotic administration in a community based hospital. BMJ Qual Improv Rep. 2015;4:u200786.w2247. https://doi.org/10.1136/bmjguality.u200786.w2247
- 6. Buyle F, Vogelaers D, Peleman R, Van Maele G, Robays H. Implementation of guidelines for sequential therapy with fluoroquinolones in a Belgian hospital. Pharmacy world & science: PWS. 2010;32(3):404-10. https://doi.org/10.1007/s11096-010-9384-y
- 7. Lau BD, Pinto BL, Thiemann DR, Lehmann CU. Budget impact analysis of conversion from intravenous to oral medication when clinically eligible for oral intake. Clin Ther. 2011;33(11):1792-6. https://doi.org/10.1016/j.clinthera.2011.09.030
- 8. Goff DA, Bauer KA, Reed EE, et al. Is the "low-hanging fruit" worth picking for antimicrobial stewardship programs? Clin Infect Dis. 2012;55:587-92. https://doi.org/10.1093/cid/cis494
- Spiegel BM, Dulai GS, Lim BS, Mann N, Kanwal F, Gralnek IM. The cost-effectiveness and budget impact of intravenous versus oral proton pump inhibitors in peptic ulcer hemorrhage. Clin Gastroenterol Hepatol. 2006;4(8):988-97. https://doi.org/10.1016/j.cgh.2006.05.019
- 10. Gasparetto J, Tuon FF, Dos Santos Oliveira D, Zequinao T, Pipolo GR, Ribeiro GV, Benincá PD, Cruz JAW, Moraes TP. Intravenous-to-oral antibiotic switch therapy: a cross-sectional study in critical care units. BMC Infect Dis. 2019;19(1):650. https://doi.org/10.1186/s12879-019-4280-0
- 11. Shrayteh ZM, Rahal MK, Malaeb DN. Practice of switch from intravenous to oral antibiotics. Springerplus. 2014;3:717. https://doi.org/10.1186/2193-1801-3-717
- 12. Sevinç F, Prins JM, Koopmans RP, et al. Early switch from intravenous to oral antibiotics: guidelines and implementation in a large teaching hospital. J Antimicrob Chemother. 1999;43:601-6. https://doi.org/10.1093/jac/43.4.601
- 13. Przybylski KG, Rybak MJ, Martin PR, et al. A pharmacist-initiated program of intravenous to oral antibiotic conversion. Pharmacotherapy 1997;17:271-6.
- 14. Nathwani D, Lawson W, Dryden M, et al. Implementing criteria-based early switch/early discharge programmes: a European perspective. Clin Microbiol Infect. 2015;21:S47-55. https://doi.org/10.1016/j.cmi.2015.03.023
- 15. Sabry N, Dawoud D, Alansary A, et al. Evaluation of a protocol-based intervention to promote timely switching from intravenous to oral paracetamol for post-operative pain management: an interrupted time series analysis. J Eval Clin Pract 2015;21:1081-8. https://doi.org/10.1111/jep.12463
- 16. YS Tejaswini, SR Challa, KS Nalla, RS Gadde, AL Pavani, V Neerisha. Practice of intravenous to the oral conversion of antibiotics and its influence on the length of stay at a tertiary care Hospital: a prospective study. Journal of Clinical and Diagnostic Research.2018;12:3.
- 17. K Miliani, R Taravella, D Thillard, et al. Peripheral venous catheter-related adverse events: evaluation from a multicentre epidemiological study in France (the CATHEVAL Project). PLoS One. 2017;12(1):e0168637. https://doi.org/10.1371/journal.pone.0168637
- 18. KG Przybylski, MJ Rybak, PR Martin, et al. A pharmacist initiated program of intravenous to oral antibiotic conversion. Pharmacotherapy: @e Journal of Human Pharmacology and Drug @erapy. 1997;17(2):271-6.
- 19. Tarekegn GY, Dagnew SB, Wondm SA, Kebede B, Ayele EM. Assessment of Intravenous Antibiotics to Peroral Antibiotics

El Ouweini A, Bagnnan IA, Babu T, Levien T, Malaeb D. Assessment of intravenous to oral medications conversion practice at a UAE tertiary care hospital: A retrospective observational study. Pharmacy Practice. 2025 Jan-Marc;23(1):2985.

https://doi.org/10.18549/PharmPract.2025.1.2985

- Conversion Practice and Its Associated Factor at University of Gondar Comprehensive Specialized Hospital: Prospective Observational Study. Can J Infect Dis Med Microbiol. 2022;2022:8395424. https://doi.org/10.1155/2022/8395424
- 20. MF Engel, DF Postma, MEJL Hulscher et al. Barriers to an early switch from intravenous to oral antibiotic therapy in hospitalized patients with CAP. European Respiratory Journal.vol. 2013;41(1):123-30. https://doi.org/10.1183/09031936.00029412
- 21. YS Tejaswini, SR Challa, KS Nalla, RS Gadde, AL Pavani, V Neerisha. Practice of intravenous to the oral conversion of antibiotics and its influence on the length of stay at a tertiary care Hospital: a prospective study. Journal of Clinical and Diagnostic Research. 2018;12:3.
- 22. Schouten JA, Hulscher ME, Natsch S, Kullberg BJ, van der Meer JW, Grol RP. Barriers to optimal antibiotic use for community-acquired pneumonia at hospitals: a qualitative study. Qual Saf Health Care. 2007;16(2):143-9. https://doi.org/10.1136/gshc.2005.017327
- 23. Halm EA, Switzer GE, Mittman BS, Walsh MB, Chang CC, Fine MJ. What factors influence physicians' decisions to switch from intravenous to oral antibiotics for community-acquired pneumonia? J Gen Intern Med. 2001;16(9):599-605. https://doi.org/10.1046/j.1525-1497.2001.016009599.x
- 24. Mertz D, Koller M, Haller P, Lampert ML, Plagge H, Hug B, et al. Outcomes of early switching from intravenous to oral antibiotics on medical wards. J Antimicrob Chemother. 2009;64(1):188-99. https://doi.org/10.1093/jac/dkp131
- 25. Athanassa Z, Makris G, Dimopoulos G, Falagas ME. Early switch to oral treatment in patients with moderate to severe community-acquired pneumonia: a meta-analysis. Drugs. 2008;68(17):2469-81. https://doi.org/10.2165/0003495-200868170-00005

