Original Research

Natural agents' role in cancer chemo-resistance prevention and treatment: molecular mechanisms and therapeutic prospects

Anas Abed, Malek Zihlif, Heba A Khader, Luai Hasoun, Amniyah Al-Imam, Mahmoud J Al Shawabkeh, Leen B Fino, Alhareth A. Alsa'd, Mustafa Al-Shajlawi, Ahmad R. Alsayed D

Abstract

Cancer is a leading cause of morbidity and mortality worldwide, necessitating exploring novel preventive and therapeutic strategies. Over the years, the potential of natural agents in cancer prevention and treatment has garnered considerable attention. This review highlights the current understanding of the molecular mechanical bases underlying the role of natural agents and their therapeutic potential in combating cancer. The molecular mechanisms through which these natural agents exert their anti-cancer activities are elucidated, encompassing modulation of signaling pathways involved in cell proliferation, apoptosis, angiogenesis, metastasis, and immune response. Additionally, the review delves into the emerging research on the epigenetic modifications induced by natural agents, providing a deeper insight into their anti-cancer properties.

Keywords: anti-cancer; natural products; molecular

Anas ABED. Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.

Malek ZIHLIF. Department of Pharmacology, The University of Jordan, Amman, Jordan.

Heba A KHADER. Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, PO Box 330127, Zarqa 13133, Jordan. **Luai HASOUN**. Department of Clinical Pharmacy and

Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan.

Amniyah AL-IMAM. Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan.

Mahmoud J Al SHAWABKEH. Department of Basic Dental Sciences, Faculty of Dentistry, Applied Science Private University, Amman, Jordan.

Leen B FINO. Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan.

Alhareth A. ALSA'D. Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.

Mustafa AL-SHAJLAWI. Iraq.

Ahmad R. ALSAYED*. Associate Professor in Clinical Pharmacy, Ph.D., MSc, PharmD, Ph.D. in Therapeutics and Precision Medicine, Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University. a_alsayed@asu.edu.jo, a.alsayed.phd@gmail.com

INTRODUCTION

It is well known that cancer is the second cause of death globally after cardiovascular diseases. In 2017, 1.7 million people were diagnosed with cancer in the USA, and 600.000 of them died as a consequence.¹ Ninety percent of cancer-related deaths are due to developing drug resistance, leading to ineffective chemotherapeutic agents.²

This inefficacy can be defined as the capacity of cancer cells to reduce the potency and efficacy of chemotherapeutic agents.3 Certain forms of cancer, such as renal and hepatocellular carcinoma cells, develop resistance. Cells can resist chemotherapeutic drugs without prior exposure. This intrinsic resistance is unsatisfactory in the first treatment.^{4,5} In certain instances, cancer cells may initially demonstrate a favorable response to chemotherapy but subsequently exhibit an insufficient reaction due to the emergence of resistance (commonly referred to as acquired resistance).³ Prior research has demonstrated that the development of drug resistance in cancer can occur through intricate mechanisms, such as the utilization of ATP-binding cassette (ABC) transporters to facilitate drug efflux, as observed in cell lines and animal models, ⁶ altering the proteins expression, ^{7,8} drug detoxification, ⁹ augmenting repair mechanisms in DNA,10 apoptosis evasion,1 and/or changes in the tumor microenvironment¹¹ Preclinical and clinical studies demonstrated that the host's microbiota can, in fact, alter chemotherapy and immunotherapy responses. Thus modifying the gut microbiota can facilitate overcoming medication resistance, improving cancer treatment, and restoring healthy microbiota¹²

This called for the need for investigating innovative approaches to overcoming anticancer drug resistance. Consequently, extensive research was conducted in this realm exploring the potential utilization of various approaches including drugs

derived from natural phytochemical recourses to overcome anticancer drug resistance.¹³ Additionally, using natural products derived from medicinal plants and other natural sources has shown great potential as a viable and economically efficient strategy.¹⁴⁻¹⁶

Therefore, this review aims to highlight the current understanding of the molecular mechanical bases underlying the role of natural agents and their therapeutic potential in combating cancer.

Mechanistic Underpinnings of Chemotherapy Resistance in Cancer

The phenomenon of chemotherapy resistance represents a significant challenge in cancer treatment. Malignant cells can potentially acquire mechanisms that enable them to evade therapeutic interventions. Gaining a comprehensive understanding of these pathways may facilitate the development of novel medications utilizing innovative targeting strategies, thereby offering significant clinical implications. The present section provides an analysis of medication resistance mechanisms that are clinically relevant.

Drug Efflux

Drug efflux is a prominent mechanism contributing to chemotherapy resistance. It involves the active transport of drugs out of the intracellular environment through energy-dependent pumps. ^{17,18} The overexpression of the multidrug efflux pumps is one of the leading causes of chemotherapy failure due to their ability to actively expel drugs from cancer cells, thereby reducing intracellular drug concentration and diminishing their cytotoxic effects, potentiating the cell's capability to evade the treatment. ¹⁹⁻²² This phenomenon may exhibit either intrinsic or acquired characteristics, indicating its presence before the cellular intervention or after drug administration. ¹

ABC transporter family are sophisticated transmembrane transporter proteins that were found to be direct drug efflux transporters.²³ In human beings, a total of 48 ABC transporters have been identified. Using a phylogenetic analysis approach, these transporters can be categorized into seven distinct subdivisions, namely ABCA through ABCG. ABC transporters depend on ATP hydrolysis to pump substrates out of cells. ABCB1, ABCG2, and ABCC1 are the most well-known ABC transporters linked to cancer multidrug resistance. ABCB1 and ABCG2 were linked with multidrug resistance in vitro. However, their in vivo association with chemoresistance in cancer patients is still ambiguous. Hence neither can be used as predictive markers. 1,23-25 Moreover, the existing body of literature suggests that they play a role in the transportation of various endogenous compounds, specifically lipids, as well as exogenous substances including toxins and pharmaceuticals.²⁶ These transporters are differentiated from classical selective transporters due to their ability to interact with a wide range of structurally and chemically diverse substrates, exceeding 200 in number. This characteristic is known as promiscuity.

Furthermore, their impact on tumor biology depends not solely

on their capacity to remove cytotoxic drugs from cells. Besides regulating lipid export and maintaining lipid homeostasis, this group of 48 transporters also facilitates the liberation of bioactive lipids, specifically phospholipids, and sphingolipids. These free lipids subsequently activate signaling cascades involved in cellular processes such as proliferation, migration, and tumorigenesis. ²⁷⁻³¹ Several transporters are known to play a significant role in acquiring multidrug resistance (MDR) characteristics in cancer chemotherapies. Notable examples include ABCB1, ABCC1, and ABCG2, along with various other transporters, ²³which will be briefly discussed below.

ABCB1, or MDR1 or P-glycoprotein (P-gp), is a widely studied transporter linked to drug resistance in various tumor types, including leukemia, multiple myeloma, colorectal, kidney, and lung cancers. A positive correlation has been observed between the overexpression of P-gp in cancer cells and their heightened resistance to various chemotherapeutic agents. Thus, overexpression of ABCB1 potentiates the cell competence and hinders chemotherapy. Furthermore, the efflux of drugs from the cell is linked to ATP hydrolysis and the transporter's conformational alterations. This transporter has the capability to bind and transport a diverse range of drugs.

The upregulation of ABCC1, also called multidrug resistanceassociated protein-1 (MRP1), is a significant contributor to the ineffectiveness of drugs in various types of cancer malignancies. ABCC1 is a 190 kDa glycophosphoprotein identified in a multidrug-resistant lung cancer cell line that did not overexpress ABCB1. It is believed that ABCC1 both induces an inflammatory response and protects cells from oxidative stress, xenobiotics, and endogenous toxic metabolites. Nevertheless, in ovarian cancer, for example, elevated ABCC1 expression contributes to disease progression and drug resistance. There was an observed upregulation of ABCC1 in both the untreated and treated samples, suggesting a potential involvement of ABCC1 in both intrinsic and acquired resistance. Comparably, a heightened level of ABCC1 transcripts was detected in ovarian cancer tissue before the administration of chemotherapy, in contrast to healthy ovarian tissue. Furthermore, it is important to mention that in vitro studies have demonstrated that the suppression of the ABCC1 gene resulted in heightened responsiveness to different chemotherapeutic agents and reduced cell proliferation in various types of malignancies. 36-40

The ABCC1 transporter has the ability to expel various types of anticancer drugs, including vinca alkaloids, a limited number of kinase inhibitors, and methotrexate. This particular transporter is also responsible for actively transporting organic anionic compounds conjugated with either glutathione (GSH), glucuronide, or sulfate. In addition to the detoxification enzymes specific to certain drugs, glutathione S-transferase (GST) demonstrates a broad detoxifying effect. GST plays a role in the detoxification process of various anticancer medications. This is achieved through the binding of a glutathione molecule to the medication, resulting in its inactivation and enhanced affinity to specific ABC transporters. Notably, these transporters primarily belong to the ABCC and ABCG families. Thus, the use of peptidomimetic glutathione conjugate of ethacrynic

acid (EA) was able to inhibit the efflux of MRP1- transported drugs in ovarian cancer cells (overexpress MRP1). 27,46-48

The Breast Cancer Resistance Protein (BCRP), also called ABCG2, is recognized as a primary efflux transporter for breast cancer. The expression of ABCG2 has been observed in cancer stem cells (CSCs) that are positive for CD133 in human colorectal tumors. As a result, it is regarded as a marker for malignancies associated with such CSCs. 49,50 ABCG2 was also found to be overexpressed in CD133+ CRC stem-like cells. Moreover, the downregulation of ABCG2 expression increases the apoptosis rate of CD133+ CRC-SCs significantly after chemotherapy.8 In addition, the elimination of ABCG2 by siRNA was reported to drastically improve the chemotherapy efficacy of LS174T and CD133+ CRC cells.51,52 The upregulation of ABCG2 has been observed to be linked with different types of malignancies. 53,54 ABCG2 has the ability to transport a diverse range of anticancer medications, including those with both positive and negative charges. ABCG2 is also referred to as Mitoxantrone Resistance Protein (MXR), which is responsible for Mitoxantrone efflux from malignant cells. It induces drug resistance by efficiently transporting a vast array of anticancer drugs, including genotoxic agents and novel Tyrosine Kinase inhibitors (e.g. Gefitinib and Imatinib)., Epipodophyllotoxin, Mitoxantrone, Camptothecins, Bisantrene, Anthracyclines, and Flavopiridol. 49,55

In addition, it has been demonstrated that the upregulation of ABCC2 and ABCC3 plays a crucial role in conferring resistance to various cytotoxic agents, including Methotrexate, Cisplatin, Doxorubicin, and Etoposide. ABC transporters mediate multidrug resistance to various chemotherapeutics. ABCB1, ABCC2, and ABCG2 are also linked to chemoresistance. ABCB1, ABCC2, and ABCG2 substrates include anticancer medicines including Doxorubicin, Cisplatin, and 5-Fluorouracil, reducing cancer cell bioavailability. Many ABCB1, ABCC2, and ABCG2 substrates overlap, increasing cancer chemotherapy resistance. Inhibitors of these transporters can be utilized as chemosensitizers. Quercetin for instance was found to downregulate ABCB1 expression in Doxorubicin-resistant breast cancer MCF-7 cells, enhancing the effect of Doxorubicin, Paclitaxel, and Vincristine. Moreover, in breast cancer MCF-7 and MDA-231 cells, Quercetin downregulated Doxorubicin effluxers ABCC1 and ABCG2. It was also reported that Quercetin downregulated ABCB1, ABCC1, and ABCC2 expression, sensitizing the cells to 5-Fluorouracil, Mitomycin C, and Doxorubicin in the multidrug-resistant human hepatocellular carcinoma model BEL/5-FU. The efflux pump activity of these transporters was reduced by Quercetin, as expressed by the rise in Rhodamine-123 and Doxorubicin intracellular accumulation following Quercetin treatment 56-58. They were found to increase chemotherapy resistance in some types of cancers. 57,59,60 Thus, a comprehensive comprehension of ABC transporters encompassing their structural, physiological, overexpression, and mutational aspects holds significant potential in developing efficacious anticancer therapeutics.

Drug detoxification

The detoxification of drugs is considered one of the prominent mechanisms to antagonize chemotherapy treatment. As it is well known, this process involves two main pathways. The first pathway (Phase I) is mediated by cytochrome P450 enzymes (CYP450), encompassing hydrolysis and oxidation-reduction reactions. CYP450 oxidases are key to drug metabolism. They metabolize anticancer medicines. Therefore, their high expression in many malignancies causes rapid turnover and drug removal before reaching the target. ^{20,61,62} The Phase II pathway comprises conjugation reactions, including glutathionylation, glucuronidation, acetylation, methylation, and sulfonation. ⁶³ Phase II is considered to be a complementary stage to phase I, as its primary objective is to enhance the hydrophilic properties of the parent drug or phase I metabolite. This modification is crucial in facilitating the excretion of the drug or metabolite. ²⁰

Furthermore, ABC efflux transporters translocate phase II conjugated outside the cell. 42,43 As an example, the prodrug Irinotecan, which functions as a topoisomerase-1 inhibitor, undergoes hepatic metabolism facilitated by carboxylesterases, resulting in the formation of the active compound 7-ethyl-10hydroxycamptothecin (SN-38). Subsequently, SN-38 undergoes glucuronidation and is actively transported out of the cell via ATP-binding cassette (ABC) transporters.⁶⁴ The concurrent operation of detoxification mechanisms and efflux transporters substantially diminishes the chemotherapeutic efficacy. 65 CYPs primarily expressed in the liver (constituting 90% of the body) have been shown to be conserved in cancer cells, and examined in malignancies and cancer cell lines. Therefore, CYPs may play a role in anticancer drug detoxification and biotransformation. Numerous studies highlight the corresponding substrate specificities of the CYP3A and ABCB1 (ATP-binding cassette B1) transporters. This combination of mechanisms may have led to decreasing the concentration of active pharmaceuticals in systemic circulation and target cells and thus to chemotherapy drug resistance.66

Glutathionylation is nother significant pathway for drug resistance conjugation, which is facilitated by the GSH-GST system.63 Glutathione S-transferases (GSTs) are a group of enzymes that facilitate the conjugation of glutathione (GSH) to chemotherapy drugs. This process enhances the hydrophilicity of the drugs, thereby facilitating their efflux from the cell. 42,43 In the catalysis of GST P1-1, most chemotherapy drugs can bind to glutathione (GSH) to form adducts, which could be pumped out of the cells by using multidrug-resistant proteins reducing the drug retention time and resulting in reduced anticancer effectiveness in addition to severe clinical multidrug resistance in cancer cells. 67 Additionally, there have been reports indicating a proportional increase in the levels of GSH and GST with the progression of cancer stages. Nonetheless, an interindividual variability among patients was also observed, limiting this finding's clinical implication.⁶⁸ It is noteworthy to mention that a positive correlation has been examined between the expression level of the GST π protein and the development of drug resistance in various neoplastic conditions. 69-72

A study has reported a correlation between the polymorphism of the GST gene and the occurrence of tumors at the genetic level.⁷³ GST gene polymorphism can exacerbate the aggregation of reactive metabolites in the body, thereby increasing the

likelihood of their interaction with biomolecules in the cells, triggering the oncogenesis process⁷⁴ and the efficiency of chemotherapy.^{75,76}

Regrettably, a number of chemotherapeutic agents serve as substrates for detoxification mechanisms. Thus, directing attention towards the machinery within this domain may aid in surmounting the challenge of resistance.

Apoptosis inhibition

Preventing cell demise is a critical characteristic of cancer. The principal objective of anticancer drugs is to trigger programmed cell death, or apoptosis.⁷⁷ As a result, any modifications to the apoptosis system could lead to resistance to drugs.²⁰ Based on existing research, promoting apoptosis can make cancer cells more susceptible to chemotherapeutic drugs like 5-FU, DOX, and ActD. The process of evoking apoptosis can therefore assist in mitigating chemoresistance.78 Two primary pathways facilitate apoptosis: the extrinsic and intrinsic pathways.⁷⁷ The extrinsic pathway activation occurs when the tumor necrosis factor family binds to their specific receptors located on the cell's surface. This event leads to caspase-8 activation, consequently triggering cellular apoptosis.79 The initiation of the intrinsic pathways is governed by mitochondrial factors, specifically an imbalance between pro-apoptotic proteins such as BAX and BAK, and anti-apoptotic proteins such as BCL-2, BCL-XL, BCLw.80-82 The mobilization of pro-apoptotic signaling entities primes the mitochondrial outer membrane to become permeable, triggering the release of cytochrome c and a cascade of apoptotic reactions mediated by caspases.⁷⁷

The imbalance between pro-apoptotic and anti-apoptotic entities also serves as a critical factor in the onset of therapeutic resistance in cancer treatments.83 In recent decades, cancer research has concentrated on medications and radiotherapy to accelerate tumor cell death, reduce tumor volume, and stop invasion. Oncology medications target several survivalpromoting pathways, yet the basic apoptosis pathway induces apoptosis. BCL-2 gene identification in follicular lymphoma patients can inhibit cancer growth by increasing apoptosis. FDA also approved a BCL-2-targeted medication that regulates cancer cell proliferation and promotes apoptosis. A leukemia/nonsolid tumor clinical trial used selective Bcl-2 drugs. Some solid cancers were treated with Bcl-xL inhibitors and chemotherapy. In several cancers, the inhibitor of apoptosis (IAP) proteins limit caspase activation and promote tumor cell survival, worsening prognosis.84 Accordingly, the imbalance in cellular apoptosis regulation, characterized by the overexpression of anti-apoptotic proteins or the suppression or disruption of proapoptotic proteins production is a key trait of cancer cells. 83,85,86 It has been noted in various cancer types, including breast cancer, acute myeloid leukemia, and non-Hodgkins lymphoma, that there is a positive correlation between the increased expression of anti-apoptotic proteins and the capability of cancer cells to evade therapeutic interventions.87-89 Through proteomic analysis, it was found that cells resistant to ABT-199 had higher expression of pro-growth and anti-apoptotic proteins compared to their progenitor cells. At the same time, ONO-7475 was observed to reduce these proteins in both parent

and resistant cells 90 . Presumably, increased Bcl-2 and Akt levels inhibit the release of cytochrome c from the mitochondria, subsequently discouraging the apoptotic cascade. 86,91 The activation of Akt leads to the phosphorylation of NF κ B, which obstructs apoptotic processes, thereby facilitating cancer cell survival. Both Akt and NF κ B activate Bcl-2's inhibitory function, enhancing cellular resistance. 92 In clinical practice, developing targeted therapies to modulate pro- or anti-apoptotic protein levels may provide a potential solution for overcoming drug resistance in cancer, thereby improving clinical outcomes.

Improved DNA damage repair

Many chemotherapeutic agents, including platinum-based drugs, alkylating substances, and anthracyclines, primarily function by inducing DNA damage in cancer cells.93 However, the effectiveness of this approach can be compromised by the cell's DNA repair responses, which can lower drug efficiency and contribute to resistance. 94,95 A variety of DNA repair mechanisms are known, such as direct reversal, mismatch repair (MMR), nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR), and nonhomologous end joining (NHEJ). 94,96,97 including, direct reversal, mismatch repair (MMR), nucleotide excision repair The path of DNA restoration is influenced by several factors, including tissue location, the nature of the DNA-drug adduct, and the proteins involved. 20,93,96 For example, the DNA repair endonuclease XPF and the DNA excision repair protein ERCC1 are crucial in NER and interstrand crosslink repair pathways.98 Research has demonstrated a positive link between the overexpression of these proteins and the development of significant drug resistance, such as resistance to platinum-based drugs. 99,100

Contrastingly, studies have reported that patients with ERCC1-negative non-small cell lung and breast tumors experienced a substantial reduction in mortality rate when treated with cisplatin-based chemotherapy compared to those with ERCC1-positive tumors. 101,102 Another instance is the resistance to alkylating chemotherapeutic agents, which was significantly associated with the overexpression of the O6-methylguanine DNA methyltransferase (MGMT) repair enzyme. Patients with glioblastoma demonstrating elevated MGMT levels exhibited poorer treatment results and higher mortality rates compared to those with lower expression levels. 103 Consequently, such proteins may serve as prognostic markers and promising therapeutic targets for various anticancer drugs.

Epigenetic alterations

In addition to previously discussed resistance strategies, epigenetic modifications represent one of the key mechanisms. These modifications primarily influence the gene expression and functionality of cells, without necessarily inducing mutations in the DNA sequence. ^{104,105} Epigenetic changes are hereditary genomic modifications that don't lead to a change in the DNA sequence. Such changes can arise from various mechanisms like covalent DNA modification (for example, methylation), alteration of histone proteins, or gene silencing mediated by micro-RNA (miRNA). ¹⁰⁶ Epigenetic modifications can manifest in different forms, such as alterations related to

noncoding RNA.1,107

The process of DNA methylation is utilized in cellular division, wherein a methyl-group is covalently affixed to DNA cytosine through the action of DNA methyltransferases. 108 This is an essential epigenetic mechanism where DNA methyltransferases add a methyl (CH3) group to cytosines in position 5. Methylation can either stimulate or suppress the transcription of various genes, thereby regulating several cellular functions.¹⁰⁹ The phenomenon of hypermethylation has been noted to affect a significant number of cancer genes, leading to the suppression of tumor suppressor genes through transcriptional silencing. This is particularly evident in the CpG promoter islands of tumor suppressor genes. 110,111 In addition, several multigene panels have been clinically validated. Methylation commonly silences well-established tumor suppressor genes like CDKN2A, hMLH1, and MGMT. In addition to these, three genes associated with tumor advancement - CSF2, DIS3L2, and OAF - were examined in a study involving 120 patients with colorectal cancer. There was a noticeable correlation between the count of hypermethylated genes and disease progression tracked over five years 112. One notable example is the substantial involvement of gene promoter hypermethylation in the manifestation of cisplatin resistance in cells of ovarian cancer. 110,113

On the other hand, it is well-established that demethylation or hypomethylation mechanisms significantly impact the chemotherapeutic efficacy of cancer cells and enhance the activation of oncogenes. In the context of esophageal squamous cancer cells, it has been observed that hypomethylation of the ABCB1 promoter leads to an upregulation of the ABCB1 efflux transporter. This upregulation subsequently contributes to the amplification of drug resistance. 114 Furthermore, it has been revealed that the process of DNA demethylation and alterations in histone structures within the promoter region contribute to the upregulation of the protein known as thymosin $\beta 4$ (T $\beta 4$). The observed enhancement in drug resistance in a hepatocellular carcinoma (HCC) cell line is attributed to the augmentation resulting from treatment with the VEGFR inhibitor sorafenib. 115 A separate investigation exhibited that the inhibition of DNA methylation and histone modifications in cells affected by acute lymphoblastic leukemia resulted in the reversal of disease recurrence and the restoration of chemosensitivity. 116,117 As Therefore, the exploration and intervention of these resistance mechanisms could potentially offer favorable opportunities in the field of cancer therapy, as evidenced by their effectiveness in addressing resistant-heterogeneous multiple myeloma. 118

Furthermore, epigenetic changes can also manifest as chromatin reorganization and alterations related to noncoding RNAs, which include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). 119,120 MiRNAs play a curial role in modulating the gene expression post-transcriptionally and protein synthesis. 121 On the other hand, LncRNAs lncRNAs can interact with chromatin-modifying proteins to induce structural changes in the chromatin. This can either permit or hinder the binding of transcription factors and other proteins to the DNA, which in turn can activate or repress gene expression. 119,120 DNA methyltransferase inhibitor have been used as a strategy

to reverse the hypermethylation status of certain genes and overcome chemoresistance. In pediatric acute lymphoblastic leukemia (ALL), for instance, studies have shown that DNMT inhibitors can restore the expression of genes preferentially silenced during relapse, thereby improving treatment response and patient outcomes. ¹²² Both these noncoding RNAs contribute to chemoresistance by modulating protein synthesis. Multiple studies have demonstrated the upregulation and oncogenic potential of microRNA (miRNA) and long non-coding RNA (lncRNA) in diverse cancer types, including lymphoma, lung, breast, stomach, colon, and pancreatic cancer. ^{121,123-125} Hence, these epigenetic modifications could be considered potential future targets and could play a part in the hallmarks of cancer.

ATP-Mediated resistance

Chemotherapy resistance can be brought about by ATP-based pathways, which can be either inside or outside the cell. Research suggests that ATP levels inside cancer cells are typically higher than those inside healthy cells from the same source. This increase in ATP within the cell is primarily due to a boost in glycolytic metabolism via a process known as the Warburg effect. 126 This effect is a common trait observed in nearly all forms of cancer. 127,128 Furthermore, it has been reported that cancer cells resistant to drugs have higher levels of ATP within them compared to other tumor cells from the same tissue. This increased ATP is necessary for these cells to survive under conditions harmful to the cell. 129,130 This excess intracellular ATP (iATP) pool supports cancer cell growth and helps them survive metabolic stress, as shown by experiments. The activity of the efflux pump in ABC transporters, the phosphorylation of PDGFR, and the activation of the Akt-mTOR and Raf-MEK pathways are all increased, which in turn enhances resistance to a range of chemotherapy drugs and targeted tyrosine kinase medications. Cancer cells that are drug-resistant have higher ATP levels than their drug-sensitive counterparts. Elevated intracellular ATP levels, as well as ATP internalization via macropinocytosis, lead to enhanced movement and invasion by upregulating EMT-TFs and their activities.

Cancer cells exhibit heightened intracellular ATP (iATP) levels due to the Warburg effect, which involves glucose transport and aerobic glycolysis. Notably, cancer cells resistant to treatment have even higher iATP levels than their original, non-resistant counterparts. This elevated ATP content aids in the formation and maintenance of resistance. Experimental data suggest that this increased iATP pool enables tumor cells to proliferate and survive metabolic stress. Resistance to various chemotherapeutic drugs and targeted tyrosine kinase medications is also facilitated by increased iATP. This happens through the upregulation of ABC transporters' efflux pump activity, the phosphorylation of PDGFR, and the activation of the Akt-mTOR and Raf-MEK pathways. Resistant cancer cells have a greater ATP content than cells sensitive to drugs. Furthermore, by increasing the activity of EMT-TFs, the internalization of ATP (eATP) via macropinocytosis, and iATP levels, migration and invasion are enhanced. 131,132 For instance, Zhou et al.'s study found that chemoresistant colon cancer cell lines express double the amount of iATP compared

to non-resistant cells.^{129,132} Conversely, the study found that sensitivity to chemotherapy increased when iATP levels were reduced and glycolysis was inhibited in the resistant cells, implying that controlling these elements can be crucial for managing chemoresistance.¹²⁹ The introduction of ATP directly into cancer cells in colon cancer cases was shown to induce a transformation from drug-sensitive to drug-resistant cells, while depleting ATP by inhibiting glycolysis restored their sensitivity to chemotherapy. This underscores that iATP levels play a critical role in determining chemoresistance.¹³²

In addition to producing high levels of intracellular ATP (iATP), cancer cells can significantly uptake extracellular ATP (eATP), further increasing iATP levels, thereby enhancing drug resistance and cancer cell survival. 133 Studies show that the eATP levels in many types of cancer are 1000 to 10,000 times higher than in normal cells of the same origin. 133,134 This uptake of eATP mainly occurs via the process of micropinocytosis. 134-137 Upon internalization into the cancer cell, adenosine triphosphate (ATP) enhances the functionality of the drug efflux pathway, specifically via ATP-binding cassette (ABC) transporters. This phenomenon leads to a decrease in intracellular drug concentration, thereby facilitating the continued presence of cancer cells. 133 In addition, the presence of elevated intracellular adenosine triphosphate (iATP) levels creates a competitive environment with tyrosine kinase inhibitors (TKIs) at the binding site of receptor tyrosine kinases (RTKs). This competition leads to the activation of phosphorylation and subsequent initiation of cell signaling cascades. 138 The augmentation of ATP internalization additionally promotes the efflux of TKIs (as well as chemotherapy drugs) from the cell through the efflux transporter, consequently reducing the intracellular accumulation of TKIs and augmenting the activity of receptor tyrosine kinases (RTKs), cellular machinery, and resistance. 133 Wang et al. (year) further demonstrated that drug resistance in cancer cells is facilitated by the capacity of extracellular ATP molecules to augment the activity and upregulation of efflux-ABC-transporters. 133 eATP enhances cancer cell proliferation, migration, invasion, and therapy resistance in several cancer cell lines. Following macropinocytosis, a characteristic feature of cancer metabolism, eATP stimulates a variety of activities in cancer cells both intracellularly and extracellularly in laboratory and animal models. The internalization of eATP results in a rise in iATP levels.

Lung cancer cells have been found to absorb extracellular ATP and proteins via macropinocytosis to survive in low-energy conditions. Lung cancer exhibits high levels of extracellular ATP. Various studies have proved that non-small cell lung cancer cells can absorb this extracellular ATP, increasing intracellular ATP levels. This process fosters cancer cell proliferation and drug resistance. ATP plays a key role in controlling ABC transporters, and it has been observed that drug-resistant cancer cells possess higher ATP levels. Interestingly, when cancer cells lose ATP, their sensitivity to chemotherapy increases. Conversely, elevated intracellular ATP levels can make cells that were previously sensitive to drugs resistant to them. Extracellular ATP amplifies the activity of ABC transporters, leading to an increase in drug expulsion. It also boosts the tumor microenvironment (TME).

Cancer cells absorb extracellular ATP via macropinocytosis, resulting in an unusually high intracellular ATP concentration that fosters resistance to multiple chemotherapy treatments.⁵⁵ Given these observations, focusing on strategies to block or inhibit the absorption of eATP and ABC transporters' expression or activity could significantly enhance tumor cells' sensitivity to anti-cancer drugs.

Targets of natural agent in the treatment of cancer that is resistant to chemotherapy

The phenomenon of a specific form of cancer exhibiting resistance to multiple pharmaceutical agents is commonly referred to as the emergence of multidrug resistance (MDR).¹³⁹ A potential approach for mitigating drug resistance involves targeting the underlying mechanisms that contribute to its development. The present comprehension of these overarching mechanisms encompasses enhanced drug efflux, diminished drug influx, drug inactivation, repair of drug-induced damage, modifications in drug targets, and evasion of apoptosis. One instance of a particular mechanism involves the upregulation of resistance transporters or genes that have the ability to augment the efflux of drugs.¹⁴⁰

The development of MDR in cancer cells is related to drug efflux, which is facilitated by membrane transport proteins. ¹⁴¹ The overexpression of ATP-binding cassette (ABC) membrane transport proteins is a major factor contributing to resistance and chemotherapy failure in several types of cancer. ¹⁴²⁻¹⁴⁴

An increased efflux, or expulsion, of chemotherapeutic drugs from cancer cells results in decreased intracellular drug concentrations by actively pumping drugs out of the cells. Drug efflux transporters are primarily implicated in developing multidrug resistance (MDR) in cancer cells ^{145, 146} The aforementioned membrane transport proteins possess the capacity to eliminate pharmaceutical substances from cellular environments and facilitate their subsequent redistribution. This redistribution process lowers drug concentrations within cellular organelles to levels below those required to cause cell death, which further amplifies drug resistance. Several proteins known to be associated with MDR include P-gp, MRP, BCRP, and LRP. ¹⁴⁶ (Figure 1).

P-Glycoprotein

Permeability-glycoprotein (P-gp) or multidrug resistance protein-1 (MDR-1) is an ATP-binding cassette (ABC) glycoprotein that is encoded by the ABCB1 gene in humans. ATP binding to the cytoplasmic part of the cell membrane transporter glycoprotein activates the ATP-binding domains. Substrate efflux arises from the following hydrolysis of ATP, which alters the shape necessary for transporter functioning. P-gp can bind drugs penetrating the plasma membrane. At1,145,147 It maintains physiological homeostasis by protecting cells from xenobiotics and cellular toxicants. P-gp expression differs between cancers. P-gp expression is highest in colon, pancreas, liver, adrenal glands, and kidneys cancers. P-gp expression is moderate in soft tissue carcinomas, neuroblastomas, and hematological malignancies. P-gp levels rise after chemotherapy resistance in lung, breast, esophageal, and

Figure 1. Molecular targets of natural agents in cancer

ovarian cancers. ^{145,150} Overexpression of P-gp is typically linked to MDR as they lowers intracellular drug concentration. ^{146,150} Multiple generations of P-gp inhibitors were created to circumvent MDR and enhance the efficacy of chemotherapy in MDR malignancies. ^{143,145,148,151} MDR chemosensitizers or P-gp modulators with cytotoxic drugs, efflux pump substrates, may restore efficacy in resistant tumor cells. ¹⁵²

First-generation P-gp inhibitors are weak, non-selective, and low-affinity. To reverse MDR, high doses of these inhibitors cause toxic adverse effects. Second-generation P-gp inhibitors are more selective yet hinder chemotherapeutic drug metabolism and excretion. Third-generation P-gp inhibitors solved the shortcomings of second-generation, namely cytochrome P450 interaction. The initial three iterations exhibited unanticipated toxicities, non-specific inhibition, and unforeseen interactions in terms of pharmacokinetics between chemotherapeutic agents and potential P-gp inhibitors. Researchers are employing alternative approaches in developing fourth-generation P-gp inhibitors derived from natural compounds, aiming to enhance their safety profile. 148,151,153,154

Stemofoline, a plant alkaloid from Stemona bukilli, has been shown to raise the intracellular accumulation of P-gp substrates and increase the sensitivity of MDR leukemic cells to chemotherapy (calcein AM and rhodamine 123). According to western blot research, it does not affect P-gp expression. 155 Chang et al. examined wilforine, a sesquiterpene pyridine alkaloid, and P-gp expression and function. Wilforine resensitized MDR cancer cells to chemotherapeutic medicines while suppressing P-gp efflux in a concentration-dependent manner.156 Another study suggests that natural sesquiterpene lactones tenulin and isotenulin may be synergistic MDR cancer treatments. By increasing P-gp ATPase transporter activity, this study inhibits P-gp activity. 157 In addition, doxorubicin reduced P-gp function in human colon cancer (Caco-2) and leukemia cell lines when administered with non-toxic polyphenols like epigallocatechin gallate (EGCG), tannic acid, and curcumin. 158 Furthermore, the western blot results indicate a decrease in the level of P-glycoprotein subsequent to the administration of curcumin treatment in the drug-resistant K562/DOX cell line of chronic myeloid leukemia. Additionally, this treatment improves the cells' responsiveness to chemotherapy. 159 Further,

a reduction in P-gp expression was observed in A2780/Taxol cells that exhibited resistance following the co-administration of curcumin and piperine via solid lipid nanoparticles. 160

According to Teng et al. (2020), caffeic acid exhibits potential as a natural product for mitigating cancer MDR. The compound was found to impede the efflux of P-gp by binding to specific residues, namely GLU74 and TRY117, in human cervical cells (KB/VIN).161 A recent study has indicated that quercetin exhibits a dose and time-dependent impact on the expression of P-gp in cervical cell lines, specifically HeLa and SiHa. Based on the findings from the western blot analysis, it was observed that the co-treatment group, consisting of both quercetin and cisplatin, exhibited reduced levels of P-gp expression in comparison to the groups treated with each drug individually. 162 Besides, other studies have shown quercetin downregulation on P-gp efflux function. 163-165 Kaempferol, a naturally occurring flavonoid, can counteract MDR in HepG2 and N1S1 liver cancer cells through downregulating P- overexpression. 166 By inhibiting the expression of P-gp, the natural compound emodin has demonstrated anticancer properties and increased chemotherapy sensitivity in lung cancer cell lines (A549 and H460). 167 Furthermore, it exhibited the ability to counteract drug resistance and augment the susceptibility of cisplatin in A549/ DDP cells. 168 Ecteinascidin 74, a naturally occurring substance derived from Caribbean Sea squirts (Ecteinascidia turbinate), inhibits P-gp expression at nanmolar concentrations. Cervical cells that overexpressed P-gp also collected more doxorubicin/ vincristine. 169 Sophocarpidine from Sophora flavescens, vincristine, and Adriamycin all inhibited P-gp expression in KBV200 cells. $^{\tiny 146}$ Piperine is an alkaloid found in the plant Piper nigrum, also known as black pepper. P-glycoprotein, breast cancer resistance protein, multidrug resistance-associated proteins, and ATP-binding cassette transporter genes, specifically ABCB1, ABCG2, and ABCC1, were shown to have lower expression. This process has the ability to overcome multidrug resistance in cancer cells. 170-173

The modulation of P-gp in resistant cancer cell lines (KB-vin and NCI-H460/MX20) and the concentration-dependent stimulation of basal ATPase activity by β -carotene have been documented in previous studies. The compound Schisandrin A (also known as Deoxyschizandrin), obtained

from Fructus Schizandrae, exhibited the ability to counteract resistance to DOX that P-gp facilitated in MCF-7/DOX cells. This was achieved by inhibiting P-gp, Stat3, and NF-κB signaling pathways. The Salvia miltiorrhiza's tanshinone microemulsion can also reverse K562/ADM cells' drug resistance by blocking the P-gp efflux pump and enhancing chemotherapeutic drug accumulation. Magnolia officinali bark contains honokiol and magnolol. They suppressed P-gp in NCI/ADR-RES cells and increased P-gp substrate (calcein) accumulation in cells. In U937/ADR cells, magnolol reverses MDR by suppressing NF-KB, p65, and MDR1 and P-gp expression. Cepharanthine, coumarins, cycloalkanes, and euphocharacins A-L work as P-gp inhibitors in different cancer cell lines. Other phytochemicals that inhibit P-gp are available in Table 1.

Multidrug Resistance Proteins

The transmembrane transporters known as Multidrug resistance proteins (MRPs) are categorized under subfamily C in the ABC transporter superfamily. It is widely recognized that they facilitate the active removal of diverse substrates, thereby resulting in multidrug resistance (MDR). The MRP family comprises 13 members, designated as MRP1 through MRP13. The ABCC2 gene is responsible for encoding the Multidrug Resistance Associated Protein-1 (MRP-1) in the human body. The phenomenon of drug resistance in various cancers has been extensively investigated due to its significant implications. MRP1 is characterized by its unique attribute of being a basolateral transporter. The aforementioned statement suggests that the activity of MRP1 leads to the translocation of substances into subepithelial cells located under the basement membrane. The transporter mechanism inhibits the drug's absorption and facilitates the efflux from the intracellular environment.¹⁴⁵ MRP-1 demonstrated a substrate preference for negatively charged compounds, including endogenous, chemotherapeutics, and natural products. 145,147,150 This suggests that the transportation mechanism of MRP1 differs from that of P-gp.145

The gene encoding for MRP1 exhibits ubiquitous expression across various tissues in the body, such as the lungs, testes,

skeletal muscles, and cardiac muscles. Therefore, it is widely distributed in numerous types of tumors, such as breast cancer, and serves a significant function in MDR. A potential approach to address MDR caused by MRPs is to impede the activity of these transporters. 145,176 Multiple MRP inhibitors alter MRPs to re-sensitize cancer chemotherapy medicines. 177 Inhibitors of the MRP1 have demonstrated the ability to counteract drug resistance and enhance the sensitivity of drug-naïve cancer cells to anticancer medications. 176 Natural compounds impede MRPs efflux. Resveratrol, a polyphenol molecule found in many fruits and vegetables, has impacted MRP1 and P-gp function in multidrug-resistant human colon cancer and increased doxorubicin cytotoxicity. 178

The administration of curcumin to MCF-7 breast cancer cells that have developed tamoxifen resistance has been observed to augment the cells' responsiveness to tamoxifen while concurrently impeding the activity of MDR proteins, specifically through the reduction of MRP2 mRNA expression. 179 Curcumin also reversed cisplatin chemo-resistance in SiHa cervical cancer cells by downregulating MRP1 and P-gp1 expression (Roy and Mukherjee 2014). Quercetin, a natural polyphenol, modulates efflux transporters and other pharmacological actions. It lowered drug efflux transporter expression in triple negative breast cancer cells. (MDA-MB-231).¹⁸⁰ EGCG, a polyphenolic catechin in green tea, affects 5-fluorouracil resistance by suppressing MDR-related proteins in gastric and colorectal cancer cells.181,182 7,3',4'-trihydrox The BCRP transporter is classified as a half-ABC transporter due to its possession of a single ATP-binding cassette and six transmembrane domains. There exists a hypothesis suggesting that the functionality of BCRP may necessitate the formation of a homodimer or homooligomer. Yisoflavone (THIF) represents the primary metabolite derived from daidzein. When the combination of THIF and adriamycin was administered, it was observed that the mRNA expression levels of P-gp, MPR1, and MRP2 were comparatively lower than those observed when adriamycin was administered alone 146. Besides, strychnine decreased MRP's gene expression but not P-gp¹⁴⁶ (Table 1).

Table 1. A comprehensive list of natural products and their associated mechanisms of inhibition		
Mechanism of inhibition	Substances	
↓ The utilization of [3 H] azidopine photoaffinity labeling in the context of P-gp research implies a potential direct interaction between azidopine and the substrate binding site of P-gp.	Silymarin	
↓ ABC transporter genes (ABCB1, ABCG2, and ABCC1)	Piperine	
↓ ABCB1	Taxifolin	
↓ ABCG2	Epigallocatechin gallate, Berberine (isolated from ancient Chinese herb Coptis chinensis French), Marsdenia tenacissima.	
↓ ABCG2 and ABCC1	Curcumin	
↓ ABCG2-mediated efflux	Tenacigenin B: P8, P26 and P27	
↓ ATPase activity	Catechin, Green tea catechins	
↓ ATP-binding cassette transporters	Yu Ping Feng San, Astragali Radix, Atractylodis Macrocephalea Rhizoma, Saposhnikoviae Radix	

	nttps://doi.org/10.18549/PnarmPract.2024.2.2950
↓ BCRP	Harmine, Acacetin, Apigenin, Biochanin A, Chrysin, Diosmetin, Genistein, Kaempferol, Luteolin, Naringenin-7-glucosid Quercetin, Silymarin, Tangeretin, Curcumin, Protopanaxatriol ginsenosides 20S-ginsenoside Ginsenoside Rb1 Ginsenoside Rg3 Cannabinoids, Hypericin and hyperforin, Piperine, Terpenoids, 3'-4'-7-Trimethoxyflavone, 6-Prenylchrysin, Eupatin, Daizein, Hesperetin, Plumbagin, Resveratrol, Rotenoids, Stilbenoids, Tectochrysin, Tetrahydrocurcumin Gypenoside, Fumitremorgin C, Tryprostatin A, Terrein, Lamellarin O, Secalonic acid D, Reserpine and yohimbine (isolated from Rauwolfia serpentine), Kaempferide, Daidzein, Tanshinone IIA (isolated from Salvia miltiorrhiza), Heterotheca inuloides Cass, Kanglaite(isolated from Coix lacryma-jobi).
↓ binding of [3 H] azidopine to P-gp	Ginsenoside Rg ₃
↓ Calcein efflux	Myricetin
↓ gene and protein expression of MRP	Strychnine
↓ GST	Fucoxanthin,Yu Ping Feng San, Fisetin
↓ GST mRNA expression	Resveratrol
↓ GSTπ	Curcumin, Ginger phytochemicals, Emodin, Oridonin, Chinese herbal supplement energy and nourish lung
↓ HIF-1α	Apigenin, Epigallocatechin gallate, Quercetin, Curcumin, Resveratrol, Emodin, Nuciferine.
↓ LRP	Protopanaxatriol, ginsenosides, 20S-ginsenoside, Ginsenoside Rb1, Ginsenoside Rg3, Tetrandrine (dried root of Stephania tetrandra), Paeonol (extracted from the dry velamen of peony or any part of Cynanchum paniculatum), Oridonin, Peimine, Shen-qi-jian-wei Tang
↓ MDR1	Glau, Green tea catechins, Epigallocatechin gallate, Quercetin, Protopanaxatriol ginsenosides 20S-ginsenoside Ginsenoside Rg1 Ginsenoside Rg3 Bisdemethoxycurcumin, Honokiol and magnolol (isolated from Magnolia officinali), Schisandrin A (Deoxyschizandrin), Triptolide Three hydroxyl soy isoflavone, Paeonol (extracted from the dry velamen of peony or any part of Cynanchum paniculatum and derivatives of epimedium), Allicin Shen-qi-jian-wei Tang, Heterotheca inuloides Cass, Kanglaite, Astragalus membranaceus polysaccharides Astragaloside II, another component from A. membranaceus.
↓ MDR1 and MRP1 genes	Glaucine
↓ MDR1 gene	Saikosaponin D
↓ MDR1 gene expression	Berbamine,O-(4-ethoxyl-butyl)- berbamine, Staurosporine
↓ MDR1 mRNA	Antofine, Tetramethylpyrazine, Gravacridonetriol, Curcumin, Antofine, Ephedrine, Vauqueline, Gravacridonetriol, Clitocine Sulfinosine, Praeruptorin A (extracted from Radix Peucedani).
↓ MDR1 mRNA expression	Pyranocoumarins
↓ mRNA expression of MRP, MDR1, and MRP2	7,3',4'-trihydroxyisoflavone
↓ mRNA expression of P-gp, MRP1, MRP2, and MRP3	Xanthohumol (derived from Humulus lupulus)
↓ MRP1	Glaucine, Acacetin, Apigenin, Biochanin A, Chalcone, Genistein, Kaempferol, Luteolin, Morin, Nobiletin (found in citrus fruit), Phloretin, Curcumin, Matairesinol (found in soybean (Glycine max), Glycyrrhetinic acid (Enoxolone)(Licorice), Protopanaxatriol ginsenosides 20S-ginsenoside Ginsenoside Rb1 Ginsenoside Rg3, Tenacigenin B: P8, P26 and P27, Tenacigenin B: P2, P3 and P6, Glaucine Schisandrin B (Sch B), Ginger phytochemicals (6-Gingerol, 10-Gingerol) Ginger phytochemicals (6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione) Cepharanthine, Ginkgo biloba extract, Kaempferia parviflora extracts, Three hydroxyl soy isoflavone, Emodin, Gypenoside, Baicalin, Cinobufacini, Wogonin, Aposterol A, Fumitremorgin C, Secalonic acid D, Silybin (isolated from Silybum marianum), Sophoraisoflavone A, Tanshinone IIA (isolated from Salvia miltiorrhiza), Marsdenia tenacissima, Heterotheca inuloides Cass.
↓ MRP1 and MRP2 activity	Myricetin
↓ MRP1 and MRP2 activity (inhibited calcein efflux)	Robinetin
↓ MRP1 protein expression	Triptolide
↓ MRP1, 4 and 5	Quercetin
↓ MRP1, MRP2, MRP3	Tetramethylpyrazine,Xanthohumol(derived from Humulus lupulus).
↓ MRP1-mediated drug transport	Quercetin
↓ MRP1-mediated drug transport	Silymarin
↓ MRP2	Tryptanthrin,Three hydroxyl soy isoflavone,Kanglaite (isolated from Coix lacryma-jobi).
↓ MRPs	Guggulsterone, Baicalein and derivatives, Cannabinoids, Piperine, (Paeonol (extracted from the dry velamen of peony or any part of Cynanchum paniculatum) Beta-Elemene (isolated from Aeruginous Turmeric rhizome)), (As2O3, or white arsenic Arsenic Trioxide), Sodium norcantharidate, Brucea Javanica, Hyaluronate Oligomers, Jew ear.

Dauripophine, Glauciniternandezine, Antoline, Tryptanthrini, Lobeline (from to Dobelia inflate), Tetamethylypyrazine, Danshensu and tetramethylypyrazine (from the Chinese herbs), Actimatine £. 2-Methoxycipine i Capacidin (extracted from Capsicum annuum), Amorphigenin, Apigenin, Ampelopsin, Biochanin A., Catechini, Chinache, Chrysin, Green tea catechini, (SEGO, ECG, CG, CG), Epicatethia glaste, Epigallocaterin gallate, Formonechii, Glabridin, G3, 3°, 4°, 5, 6, 7, 8-Heptamethosy-uone), Ksempferol, Mori, Naringenin, Nobiletin (found in cirus fruit), Philorenin, Procyanidine, Outeratin, Nobiletin (found in cirus fruit), Philorenin, Procyanidine, Collection, Nobiletin (found in cirus fruit), Philorenin, Procyanidine, Collection, Nobiletin (found in cirus fruit), Philorenin, Procyanidine, Collection, Philosopy, Capacidine, Capa		
↓ P-gp-mediated cellular efflux Silymarin ↓ P-gp-mediated drug efflux Clausarin ↓ PKC Quercetin ↓ PKC Schisandrin A (Deoxyschizandrin) ↓ PKC-α and -ζ Curcumin ↓ Topo II Riccardin D ↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	→ P-g expression	Danshensu and tetramethylpyrazine (from the Chinese herbs), Acrimarine E, 2-Methoxycitpressine I, Capsaicin (extracted from Capsicum annuum), Amorphigenin, Apigenin, Ampelopsin, Biochanin A, Catechin, Chalcone, Chrysin, Green tea catechins (EGCG, ECG, CG), Epicatechin gallate, Epigallocatechin gallate, Formononetin, Glabridin, (3, 3', 4', 5, 6, 7, 8-Heptamethoxy-vone), Kaempferol, Mori, Naringenin, Nobiletin (found in citrus fruit), Phloretin, Procyanidine, Quercetin, Rotenone, Tangeretin, Curcumin, Matairesinol (found in soybean (Glycine max)), Senin, Gomisin A, Schisandrol A, Ginkgolic acid, beta-Amyrin, Glycyrrhetinic acid (Enoxolone) (Licorice), Obacunone, Oleanolic acid, Uvaol, Alisol B 23-acetate, Ginsenoside Rg3, Protopanaxatriol ginsenosides 20S-ginsenoside Ginsenoside Bh1 Ginsenoside Rg3, Tenacigenin B: P8, P26 and P27, Tenacigenin B: P2, P3 and P6 Tenacigenin B: P1, P4, P5, P9 and P28, Aurochrome, Diepoxycarotene, Mutatochrome, Glaucine, Fangchinoline, Tetrandrine (dried root of Stephania tetrandra), Matrine, Antofine, Ephedrine, Indole-3-carbinol, Staurosporine, Vauqueline, Clitocine, Sulfinosine, Bisdenthoxycurcumin, Honokiol and magnolol (Isolated from Magnolia officinali), Schisandrin A (Deoxyschizandrin), Pyranocoumarins, Ginger phytochemicals (6-Gingerol, 10-Gingerol), Alisma orientalis, Piper methysticum, Guggulsterone, Phenolic diterpenes, Vincristine, 5-Bromotetrandrine, Abietane diterpene, Amooranin, Baicalein and derivatives, Bitter melon extract, Bufalin, Cannabinoids, B-Carotene, Catechins, Cepharanthine, Coumarins, Cycloartanes, Didehydrostemofolines, Eudesmin, Euphocharacins A-L, Ginkgo blioba extract, Grapefurit jucice extracts, Hapalosin, Hypericin and Hyperforin, (Isoquinoline alkaloid, isotetrandrine), Isostemofoline, Jatrophanes, Kaempferia parviflora extracts, Kavalactones, Ningalin B and derivatives, Opiates, Piperine, Polyoxypregnanes, Sesquiterpenes, Tenulin, Sinensetrin, Taxane derivatives, Terpenoids, Tetrandine, Vitamin E TPGS, Resveratrol, Ligustrazine, Sophocarpidine, Ecte
↓ P-gp-mediated drug efflux Clausarin ↓ PKC Quercetin ↓ PKC Schisandrin A (Deoxyschizandrin) ↓ PKC-α and -ζ Curcumin ↓ Topo II Riccardin D ↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	↓ P-gp ATPase activity	Silymarin, Chlorogenic acid, Agnuside, Picroside-II, Santonin, Acteoside (Verbascosine)
↓ PKC Quercetin ↓ PKC Schisandrin A (Deoxyschizandrin) ↓ PKC-α and -ζ Curcumin ↓ Topo II Riccardin D ↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	↓ P-gp-mediated cellular efflux	Silymarin
↓ PKC Schisandrin A (Deoxyschizandrin) ↓ PKC-α and -ζ Curcumin ↓ Topo II Riccardin D ↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	↓ P-gp-mediated drug efflux	Clausarin
↓ PKC-α and -ζ Curcumin ↓ Topo II Riccardin D ↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	↓ PKC	Quercetin
↓ Topo II Riccardin D ↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	↓ PKC	Schisandrin A (Deoxyschizandrin)
↓ Topo IIα Curcumin ↓ Topo IIβ Emodin	↓ PKC-α and –ζ	Curcumin
Topo IIβ Emodin	↓ Topo II	Riccardin D
	↓ Topo IIα	Curcumin
↓ Transport function of P-gp-pump Algerian propolis	↓ Topo II β	Emodin
	\downarrow Transport function of P-gp-pump	Algerian propolis

Breast Cancer Resistance Protein (BCRP)

The BCRP is an integral component of the ATP-binding cassette (ABC) transporters belonging to the ABCG subfamily. In humans, the BCRP is encoded by the ABCG2 gene. The initial detection of this phenomenon occurred in a human breast cancer cell line that exhibited resistance to drugs and was subjected to a combination treatment of mitoxantrone

and tariquidar, a substance that inhibits P-glycoprotein. The functionality of BCRP is dependent on dimerization, as it is a half-transporter. The BCRP protein is categorized as a half-ABC transporter because it possesses a solitary ATP-binding cassette and six transmembrane domains. The probable action mechanism of BCRP involves forming a homodimer or homooligomer. 183,184 The BCRP protein is primarily found

in the cellular membranes of multiple organs, including the gastrointestinal tract, liver, kidney, brain, endothelium, mammary tissue, testis, and placenta. The main purpose of this mechanism is to facilitate the active transportation of a wide variety of both endogenous and exogenous substances, such as sulfate conjugates, taxanes, carcinogens, glutamate folates, and porphyrins, from within the cells to the extracellular environment. 185,186 In addition, it is imperative to note that the BCRP plays a crucial role in facilitating intercellular processes such as drug absorption, metabolism, excretion, and toxicity. 145 BCRP's function as a drug efflux transporter contributes to MDR and has been extensively investigated. Overexpression of BCRP has been considered one of the sources of MDR in various hematopoietic and solid tumors.186 Besides being present in cell membranes, BCRP is also detected in intracellular vesicles. The vesicles typically exhibit drug retention; however, the BCRP swiftly expels the drugs. 145 The BCRP efflux transporter is identified as an additional factor contributing to the escalation of drug resistance. The expression of BCRP is notably elevated in the side-population cells of breast cancer. These cells exhibit characteristics similar to stem cells and demonstrate a high degree of resistance to chemotherapy. the efflux of anticancer drugs. 145 There exists a notable association between elevated ABCG2 expression and unfavorable prognosis among individuals diagnosed with leukemia.187

The BCRP efflux transporter is identified as a contributing factor to the escalation of drug resistance, providing an additional rationale for this phenomenon. Breast cancer side-population cells exhibit a high expression of BCRP. These cells exhibit characteristics similar to stem cells and demonstrate high resistance to chemotherapy.¹⁴⁵ Regrettably, the development of clinically effective inhibitors targeting BCRP has been limited. Hence, there remains a requirement for developing novel and targeted inhibitors of the BCRP to enhance the efficacy and overall success of pharmacological interventions. 184,186 Harmine, a β-carboline alkaloid, has been historically employed in traditional medicine for its potential application in anticancer therapy.¹⁸⁸ The compound was recognized as a BCRP inhibitor in the MDA-MB-231 breast cancer cell line, exhibiting BCRP overexpression. The study demonstrated that while the P-gp over-expressing CEM/ADR5000 cells remained unaffected, the resistance of methotrexate and cisplatin in MDA-MB-231 cells was successfully reversed. 169,170,175 The flavonoid compound Acacetin, which exhibits mild estrogenic activity, has been found to possess potent reversal activity against BCRP-mediated drug resistance in K562 cells that have been transduced with BCRP.170,175 Moreover, many flavonoids such as apigenin, biochanin A and chrysin reversed BCRP-mediated drug resistances. 175,189 Biochanin A is an antimutagenic isoflavone that is present in red clover. It inhibited the MDR-associated proteins p-gp, MRP1, and BCRP. 169,170,175 Other flavonoids, including diosmetin, genistein, kaempferol, luteolin, naringenin-7-glucoside, and quercetin, have been reported to inhibit BCRP activity.¹⁷⁵ Tangeretin, a natural polymehoxyflavone, inhibited BCRP potently and suppressed MDR markers significantly. 169,175 (Table 1)

Lung Resistance Protein (LRP)

LRP is a transmembrane protein encoded by the LRP gene. 145

The human major vault protein (MVP or VAULT1), known as LRP, is primarily found in nuclear pore complexes and plays a role in facilitating bidirectional nucleocytoplasmic transport of molecules. The expression of LRP is typically observed in the bone marrow. There is a correlation between elevated or positive expression levels and unfavorable outcomes in leukemia, as well as various types of solid tumors. 190 The initial identification of this phenomenon occurred in the SW-1573 cell line, which is associated with non-small cell lung cancer. The protein is localized within the cytoplasm as well as the nuclear membrane of tumor cells. These vaults' involvement in MDR could be attributed to their ability to regulate the transport of drugs between the nucleus and cytoplasm. The phenomenon of LRP has been observed to result in the development of resistance to a variety of drugs, such as doxorubicin, vincristine, cisplatin, carboplatin, and epipodophyllotoxin. 145,146 LRP, unlike MRP and P-gp, does not belong to the ABC superfamily of transporter proteins. Its transmembrane transport domain lacks the ATP-binding site of ABC transporters. It transports the nucleus and cytoplasm, not the cell membrane.147 The downregulation of LRP has been found to be effective in overcoming chemotherapeutic resistance in various natural products. Ginsenoside Rg3 represents one of the primary ginsenosides obtained from the ginseng plant. The compound has been observed to impede the growth of tumor cells in both animal models and cell cultures. Additionally, it specifically targets MDR factors, in cells that exhibit resistance to treatment. 191-193 Peimine, a Fritillaria alkaloid, reversed MDR in A549/cisplatin-resistant lung cancer cells by suppressing of ERCC1 mRNA and LRP expression. 194 Paeonol, a natural phenolic compound, has been identified as a mediator in the inhibition of LRP, P-gp, and MRP in cells exhibiting multidrug resistance. 146

Protein kinase C (PKC)

PKC is a class of serine/threonine kinases dependent on phospholipids and primarily located in the cytoplasm. This kinase family comprises at least 12 isozymes. 195,196 These isozymes classified into three main groups. 197,198 Tumorigenesis and drug resistance are associated with interrupting PKC regulation. 195 Inhibiting PKC has been demonstrated to improve drug resistance and conventional chemotherapy cytotoxic activity in preclinical trials. 196,199,200 Compared to normal cells, MDR tumor cell lines upregulated PKC in the cytosol and nucleus 201-204. The activity of PKC is controlled by several phosphorylation reactions and the binding of cofactors.²⁰⁵ PKC isozymes may be activated by Ca+2, diacylglycerol (DAG), and phospholipids.²⁰⁶ A positive association was observed in MDR cancer cell lines between elevated transduction signaling of PKCs, specifically cPKC and nPKC, and the increased phosphorylation of P-gp, along with the induction of intracellular MDR phenotypes. 196,207,208 Plant-derived compounds blocking PKCs can reverse MDR in cancer cells.9 Polyphenolic curcumin suppressed PKC- α and – in breast cancer cell lines (MCF-7 and MDA-MB-231), sensitizing tumor cells to chemotherapeutic treatments.²⁰⁹ Flavonoids like quercetin also inhibited PKC signal transduction in hepatocellular carcinoma.²¹⁰ Russo et al. have found that activation of PKCα by guercetin induced apoptosis in CD95-resistant cell lines.211

Glutathione transferase (GSTs)

GSTs are a class of multifunctional enzymes recognized as phase II metabolic enzymes, which function as cellular detoxification agents. The reducing agent, glutathione, is conjugated with xenobiotics and endogenous molecules, converting these substances into more water-soluble compounds. This process facilitates their excretion.212 The GST family encompasses various classes of isozymes, namely α , Σ , Z, Ω μ , π , and θ , which play a pivotal role in the conjugation process of a diverse array of substance. 213,214 Furthermore, it has been observed that an elevated intracellular concentration of GSTs is correlated with the acquisition of MDR in cancer cells. 215-217 The reducing activity of GSTs facilitates drug resistance in tumor cells by detoxifying the drugs, reducing cells' sensitivity to chemotherapy. 214,218 Multiple studies have demonstrated a correlation between the overexpression of GSTs and the development of resistance to chemotherapy in diverse cancer types, including lung cancer, 219-221 breast cancer, 222-224 brain, 225, 226 and gastric cancer.^{227,228} Numerous natural and synthetic inhibitors of GST have been extensively studied in order to regulate multidrug resistance in cancer cells.212 Curcumin has been known for its reducing, anti-inflammatory, and chemopreventive activity. 214,229 It affects MDR markers by inhibiting $GST\pi$ in the non-small cell lung carcinoma cell line (NCI-H460/R).²³⁰ Besides, it decreased drug resistance in melanoma cells by downregulating GST and MRP1.²³¹ Emodin is a natural anthraguinone in several herbal medicines.²³² Through many pathways, it exhibited a reversal effect on multidrug-resistant promyelocytic leukemia (HL-60/ ADR cells) and human oral squamous carcinoma (KBV200 cells). One was the reduction of GSTπ.^{233,234} Recent research has also stated the inhibitory activity of emodin and quercetin on $\mathsf{GST}\pi$ to overcome MDR in tumor cells. 235 Additionally, it was observed that fisetin, a flavonol compound derived from plants, exhibited a significant decrease in the expression of GST in colorectal adenocarcinoma cells (Caco-2). This finding suggests that fisetin holds potential as a chemosensitizer for GST modulation in the context of MDR.236 Yu Ping Feng San (YPFS) is a widely recognized traditional Chinese herbal formulation that consists of three key ingredients: Astragali Radix, Saposhnikoviae Radix, and Atractylodis Macrocephalea Rhizoma. Du et al. conducted an investigation into the impact of YPFS on cisplatin-resistant lung cancer, specifically A549/ DDP cells. The intervention resulted in a decrease in MDRassociated proteins and enzymes, specifically ATP-binding cassette transporters and GST isozymes.²³⁷ A combination of Chinese herbal ingredients known as Supplement Energy and Nourish Lung (SENL) was utilized in a study involving multidrug resistant human lung adenocarcinoma A549/DDP cells. The SENL mixture comprises ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rg3, astragaloside IV, ophiopogonin D, and tetrandrine. The expression of GST π was diminished and the resistance to cisplatin in lung cancer xenografts was reversed.²³⁸ In addition, the active constituents of ginger, namely 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione, demonstrated inhibitory effects on $\mathsf{GST}\pi$ and MRP1 in prostate cancer cells that were resistant to docetaxel treatment (PC3R).²³⁹ According to another study, it has been suggested that oridonin, a tetracyclic diterpenoid derived from Rabdosia labtea, has exhibited the ability to induce apoptotic markers in gemcitabine-resistant PANC-1 pancreatic cancer cells. The expression of $GST\pi$ and lipoprotein receptor protein 1 (LRP1) has been repressed.²⁴⁰ Resveratrol, a type of natural phenol, has been observed to exert a regulatory effect on multidrug resistance in tumor cells. The management of doxorubicin resistance The application of resveratrol to Caco-2 cells resulted in a noteworthy decrease in the expression of GST mRNA, as well as the expression of MDR markers. 178 Dietary carotenoids, notably fucoxanthin (FUC) from brown seaweeds, have antioxidant properties and increase cancer cell sensitivity to chemotherapies. 241,242 In their study, Eid et al. investigated the impact of FUC on the augmentation of doxorubicin efficacy and the facilitation of apoptosis. This was achieved through the upregulation of caspases and p53, as well as the downregulation of GST, CYP3A4, and PXR in cancer cells that exhibited resistance to treatment.²²²

Topoisomerases

DNA Topoisomerases (Topo) enzymes are present and perform their functions within the cellular nucleus. The topoisomerase enzyme is responsible for modulating the topology of DNA, thereby regulating DNA repair, replication, transcription, and chromosomal segregation mechanisms.²⁴³ Two distinct classes of topoisomerases exist, namely topo I and topo II, each with unique functions. The relaxation of DNA supercoiling is accomplished through the cleavage of individual DNA strands, which is facilitated by topo I. On the other hand, topo II is responsible for separating double-stranded DNA.244,245 Cellcycle arrest and apoptosis are observed upon inhibiting a specific topoisomerase. However, blocking the two types can considerably affect the cancer cells cytotoxicity cells.^{246,247} Due to its high expression in numerous cancer cells, Topo II has emerged as a promising target for novel chemotherapy.²⁴⁸ Topoisomerase II has two main isoforms, namely topo IIα and topo Ii β ^{249, 250}. The high expression of Topo II in rapidly proliferating cancer cells is due to its pivotal involvement in cellular growth. Conversely, Topoisomerase II remains present in quiescent cells across various tissue types throughout the entirety of the cell cycle. 250,251 Topoisomerase II inhibitors are a category of highly effective chemotherapeutic agents, which comprise doxorubicin, teniposide, and etoposide.²⁵⁰ The utilization of these medications may result in significant adverse effects due to their insufficient selectivity and the possibility of drug resistance caused by enzyme gene mutations or dysregulation of their expression in cancer cells. 215,250,252,253 Thus, a promising area of chemotherapeutic research is the search for novel phytochemicals that target the enzyme topoisomerase. Several secondary metabolites, including alkaloids, flavonoids, and triterpenes, exhibit an impact on topoisomerase enzymes triterpenes.^{246,254-257} Emodin, a natural product, has been observed to exhibit reversal of multidrug resistance in promyelocytic leukemia (HL-60/ADR cells). Furthermore, it was observed that the administration of this substance resulted in a reduction in the expression of MDR proteins, namely topoisomerase II (topo II) and multidrug resistance-associated protein 1 (MRP1), while simultaneously

enhancing the intracellular accumulation of Adriamycin and Daunorubicin.233 Human oral squamous carcinoma cells with resistance have also shown similar effect.²³⁴ Curcumin also downregulated topo II in human NCI-H460/R cells.²³⁰ Chinese liverwort produces macrocyclic bisbibenzyl riccardin D. Topoisomerase II inhibition and P-gp downregulation caused leukemia cells to apoptose and reduce MDR.²⁵⁸

The Hypoxia-Inducible Factor

Hypoxia commonly arises within rapidly proliferating cancer cells. The attainment of efficacious cancer chemotherapy poses a substantial challenge.259, 260 The phenomenon of tumor hypoxia has been widely recognized as a stimulant for the upregulation of numerous genes that exhibit a strong correlation with the development of drug resistance. ²⁶¹ The hypoxia-inducible factor-1 (HIF-1) is a transcription factor that consists of two subunits, namely α and β , and is sensitive to changes in oxygen levels.261-263 According to reports, there exists a correlation between chemoresistance and the elevated expression of HIF-1 α in various types of cancer, such as ovarian cancer, hepatocellular carcinoma, glioblastoma, and colorectal cancer. $^{264\text{-}267}$ HIF-1 α also activates over 60 genes involved in tumor growth, metastasis, cellular metabolism, apoptosis, and poor prognosis. 268,269 HIF- 1α employs diverse mechanisms to facilitate the development of drug resistance in tumors, including regulating MDR-associated proteins such as p-gp and MRP .270, 271 Natural products and their derivatives represent a plentiful and reliable reservoir of resistance reversal agents that are both safe and efficacious. ²⁷² The green tea polyphenol Epigallocatechin-3-gallate (EGCG) is one of the MDR reversal modulators. 272, 273 Wen et al. suggested that downregulating HIF-1α and p-gp in doxorubicin-resistant human hepatocellular carcinoma cells (BEL-7404/DOX) with the EGCG derivative could reduce drug resistance. 272 Furthermore, the inhibitory effect of apigenin, a specific flavonoid compound, on HIF- 1α has been observed to successfully reverse the resistance to paclitaxel in hypoxic-liver tumor cells.²⁷⁴ It is noteworthy that quercetin demonstrated the ability to suppress HIF- 1α and MDR1, thereby augmenting the cytotoxic efficacy of doxorubicin and gemcitabine in cells afflicted with pancreatic and liver cancer. 275 In contrast, the downregulation of HIF-1 α protein expression by resveratrol inhibited the development of resistance to doxorubicin in MCF-7 cells under hypoxic conditions.²⁷⁶ Nuciferine, an aromatic alkaloid derived from lotus leaves, has demonstrated properties with potential therapeutic applications in the areas of anti-inflammatory, antioxidant, and anticancer activities .277-279 In recent research,

the utilization of nuciferine has been observed in drug-resistant tumor cells, demonstrating its capacity to modulate MDR proteins while concurrently mitigating the activation of Nrf2 and HIF-1 α . 280 The modulation of HIF-1 α by curcumin has also been documented in previous studie. 281

CONCLUSIONS

The utilization of natural products is gaining traction as a potential avenue for the development of efficacious anticancer agents. The abundance of sources for these products results in a significant range of targets and mechanisms of action. The presence of a wide range of variations has prompted researchers to contemplate the potential of natural substances as remedies for drug resistance in cancer. Several natural compounds can target cancer medication resistance systems and cause tumor regression. In preclinical and clinical trials, some natural substances have shown medicinal potential. Nevertheless, the utilization of natural products as a conventional treatment for drug resistance remains constrained. Additional research is required to investigate the potential of utilizing natural products in conjunction with therapeutic interventions as a means of surmounting drug resistance.

CONFLICTS OF INTEREST

Authors declare no conflicts of interest.

FUNDING

Authors received no specific funding for this work.

ABBREVIATIONS

ABCG: ATP-binding cassette subfamily G member

BCRP: Breast cancer resistance protein

GST: Glutathione transferases HIF: Hypoxia-Inducible Factor

71

LRP: lung resistance-related protein

MDR: Multidrug resistance protein

P-g: Permeability-glycoprotein

PKC: Protein kinase C

References

- Wang X, Zhang H, Chen XJCDR. Drug resistance and combating drug resistance in cancer. 2019;2(2):141-60.
- 2. Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Cancer Drug Resistance. 2016;1395:1-18. https://doi.org/10.1007/978-1-4939-3347-1_1
- 3. Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clinical & Experimental Metastasis. 2018;35(4):309-18.
- 4. Gottesman MM. Mechanisms of cancer drug resistance. Annual review of medicine. 2002;53(1):615-27.
- 5. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141-60.

https://doi.org/10.20517/cdr.2019.10

- Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2013;1832(5):606-17. https://doi.org/10.1016/j.bbadis.2013.01.020
- 7. Perez-Tomas R. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Current medicinal chemistry. 2006;13(16):1859-76.
- 8. Choromanska A, Chwilkowska A, Kulbacka J, et al. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules. 2021;26(7):1850. https://doi.org/10.3390/molecules26071850
- 9. Guo Q, Cao H, Qi X, et al. Research progress in reversal of tumor multi-drug resistance via natural products. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2017;17(11):1466-76.
- 10. Quagliano A, Gopalakrishnapillai A, Barwe SP. Understanding the mechanisms by which epigenetic modifiers avert therapy resistance in cancer. Frontiers in oncology. 2020;10:992.
- 11. Sevcikova A, Izoldova N, Stevurkova V, et al. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci. Jan 1 2022;23(1):488. https://doi.org/10.3390/ijms23010488
- 12. Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food and Chemical Toxicology. 2019;128:240-55.
- 13. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances. 2015;33(8):1582-1614.
- 14. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects. 2013;1830(6):3670-95.
- 15. Alsayed AR, Hasoun LZ, Khader HA, Basheti IA, Permana AD. Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities. Molecules. 2022;27(24):8641.
- 16. Ughachukwu P, Unekwe PJAom, research hs. Efflux Pump. Mediated Resistance in Chemotherapy. 2012;2(2):191-8.
- 17. Rang HP, Dale MM. Rang and Dale's pharmacology. Elsevier Brasil; 2007.
- 18. Alfarouk KO, Stock C-M, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. 2015;15(1):1-13.
- 19. Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AKJCPD. Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. 2013;19(40):7126-40.
- 20. Wu Q, Yang Z, Nie Y, Shi Y, Fan DJCl. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. 2014;347(2):159-66.
- 21. Xavier CPR, Belisario DC, Rebelo R, et al. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat. May 2022;62:100833. https://doi.org/10.1016/j.drup.2022.100833
- 22. Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. 2016;370(1):153-64.
- 23. Dean M, Hamon Y, Chimini GJJolr. The human ATP-binding cassette (ABC) transporter superfamily. 2001;42(7):1007-17.
- 24. Giddings EL, Champagne DP, Wu MH, et al. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun. 2021;12(1):2804. https://doi.org/10.1038/s41467-021-23071-6
- 25. Zhang J-TJCr. Use of arrays to investigate the contribution of ATP-binding cassette transporters to drug resistance in cancer chemotherapy and prediction of chemosensitivity. 2007;17(4):311-23.
- 26. Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos EJC, Metastasis E. The challenge of drug resistance in cancer treatment: a current overview. 2018;35(4):309-18.
- 27. Fojo AT, Ueda K, Slamon DJ, Poplack D, Gottesman M, Pastan IJPotNAoS. Expression of a multidrug-resistance gene in human tumors and tissues. 1987;84(1):265-9.
- 28. Robinson K, Tiriveedhi VJFio. Perplexing role of P-glycoprotein in tumor microenvironment. 2020;10:265.
- 29. Marin JJG, Monte MJ, Macias RIR, et al. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel). 2022;14(14):3524. https://doi.org/10.3390/cancers14143524
- 30. Pishas KI, Cowley KJ, Pandey A, et al. Phenotypic Consequences of SLC25A40-ABCB1 Fusions beyond Drug Resistance in High-Grade Serous Ovarian Cancer. Cancers (Basel). 2021;13(22):5644. https://doi.org/10.3390/cancers13225644
- 31. Vaidyanathan A, Sawers L, Gannon A-L, et al. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxeland olaparib-resistant ovarian cancer cells. 2016;115(4):431-41.
- 32. Satake K, Tsukamoto M, Mitani Y, et al. Human ABCB1 confers cells resistance to cytotoxic guanidine alkaloids from Pterogyne nitens. 2015;25(3):249-56.
- 33. Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci. 2020;21(9):3233. https://doi.org/10.3390/ijms21093233
- 34. Amawi H, Sim H-M, Tiwari AK, Ambudkar SV, Shukla SJDTiDD, Effects, Toxicity. ABC transporter-mediated multidrug-resistant cancer. 2019:549-80.
- 35. Nobili S, Mini E, Riganti C. Multidrug resistance in Cancer: Pharmacological Strategies from Basic Research to Clinical Issues. Frontiers Media SA; 2015.

- 36. Rosenberg MF, Mao Q, Holzenburg A, Ford RC, Deeley RG, Cole SPJJoBC. The structure of the multidrug resistance protein 1 (MRP1/ABCC1): crystallization and single-particle analysis. 2001;276(19):16076-82.
- 37. Munoz M, Henderson M, Haber M, Norris MJII. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. 2007;59(12):752-7.
- 38. Cho S, Lu M, He X, et al. Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells. 2011;108(51):20778-83.
- 39. Alatise KL, Gardner S, Alexander-Bryant A. Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel). 2022;14(24):6246. https://doi.org/10.3390/cancers14246246
- 40. Sosnik A, Bendayan R. Drug efflux pumps in cancer resistance pathways: from molecular recognition and characterization to possible inhibition strategies in chemotherapy. Academic Press; 2019.
- 41. Müller M, Meijer C, Zaman G, et al. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. 1994;91(26):13033-7.
- 42. Mo W, Liu J-Y, Zhang J-TJRaicr, therapy. Elsevier A, The Netherlands. Biochemistry and pharmacology of human ABCC1/MRP1 and its role in detoxification and in multidrug resistance of cancer chemotherapy. 2012:371-404.
- 43. Delou JMA, Souza ASO, Souza LCM, Borges HL. Highlights in Resistance Mechanism Pathways for Combination Therapy. Cells. 2019;8(9):1013. https://doi.org/10.3390/cells8091013
- 44. Hanssen KM, Wheatley MS, Yu DMT, et al. GSH facilitates the binding and inhibitory activity of novel multidrug resistance protein 1 (MRP1) modulators. FEBS J. 2022;289(13):3854-75. https://doi.org/10.1111/febs.16374
- 45. Chang X-bJM-DRiC. Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1. 2010:223-249.
- 46. Burg D, Wielinga P, Zelcer N, Saeki T, Mulder GJ, Borst PJMp. Inhibition of the multidrug resistance protein 1 (MRP1) by peptidomimetic glutathione-conjugate analogs. 2002;62(5):1160-6.
- 47. Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep. 2020;72(5):1125-51. https://doi.org/10.1007/s43440-020-00138-7
- 48. Mao Q, Unadkat JDJTAj. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport—an update. 2015;17(1):65-82.
- 49. Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol. 2020;11:599965. https://doi.org/10.3389/fphar.2020.599965
- 50. Ma L, Liu T, Jin Y, Wei J, Yang Y, Zhang HJTB. ABCG2 is required for self-renewal and chemoresistance of CD133-positive human colorectal cancer cells. 2016;37(9):12889-96.
- 51. Lei X, He Q, Li Z, et al. Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Med Oncol. 2021;38(4):43. https://doi.org/10.1007/s12032-021-01488-9
- 52. Horsey AJ, Cox MH, Sarwat S, Kerr IDJBST. The multidrug transporter ABCG2: still more questions than answers. 2016;44(3):824-30.
- 53. Mo W, Zhang J-TJIjob, biology m. Human ABCG2: structure, function, and its role in multidrug resistance. 2012;3(1):1.
- 54. Vaidya FU, Sufiyan Chhipa A, Mishra V, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken). 2022;5(12):e1291. https://doi.org/10.1002/cnr2.1291
- 55. Pan ST, Li ZL, He ZX, et al. Molecular mechanisms for tumour resistance to chemotherapy. 2016;43(8):723-37.
- 56. Folmer Y, Schneider M, Blum H, Hafkemeyer PJCgt. Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-ABCC2 antisense constructs. 2007;14(11):875-84.
- 57. Costa AR, Duarte AC, Costa-Brito AR, Goncalves I, Santos CRA. Bitter taste signaling in cancer. Life Sci. 2023;315:121363. https://doi.org/10.1016/j.lfs.2022.121363
- 58. Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan AJPo. Role of the drug transporter ABCC3 in breast cancer chemoresistance. 2016;11(5):e0155013.
- 59. Chen Y, Zhou H, Yang S, Su DJCB, Function. Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. 2021;39(2):277-86.
- 60. Guengerich FPJCrit. Cytochrome p450 and chemical toxicology. 2008;21(1):70-83.
- 61. Guengerich FPJJob, toxicology m. Mechanisms of cytochrome P450 substrate oxidation: MiniReview. 2007;21(4):163-8.
- 62. Jančová P, Šiller MJTodm. Phase II drug metabolism. 2012:35-60.
- 63. Cummings J, Boyd G, Ethell BT, et al. Enhanced clearance of topoisomerase I inhibitors from human colon cancer cells by glucuronidation. 2002;63(4):607-13.
- 64. Meijerman I, Beijnen JH, Schellens JHJCtr. Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. 2008;34(6):505-20.
- 65. Kaur G, Gupta SK, Singh P, Ali V, Kumar V, Verma M. Drug-metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol. 2020;22(10):1667-80. https://doi.org/10.1007/s12094-020-02325-7
- 66. Liu Q, Liu Z, Hua W, Gou S. Discovery of 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol Derivatives as Glutathione Transferase Inhibitors with Favorable Selectivity and Tolerated Toxicity. J Med Chem. 2021;64(3):1701-12. https://doi.org/10.1021/acs.jmedchem.0c02048

- 67. Joncourt F, Buser K, Altermatt H, Bacchi M, Oberli A, Cerny TJGo. Multiple drug resistance parameter expression in ovarian cancer. 1998;70(2):176-82.
- 68. Patel N, Chatterjee SK, Vrbanac V, et al. Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. 2010;107(6):2503-8.
- 69. Green J, Robertson L, Clark AJBjoc. Glutathione S-transferase expression in benign and malignant ovarian tumours. 1993;68(2):235-9.
- 70. Jardim BV, Moschetta MG, Leonel C, et al. Glutathione and glutathione peroxidase expression in breast cancer: an immunohistochemical and molecular study. 2013;30(3):1119-28.
- 71. Yu P, Du Y, Cheng X, Yu Q, Huang L, Dong RJWjoso. Expression of multidrug resistance-associated proteins and their relation to postoperative individualized chemotherapy in gastric cancer. 2014;12(1):1-6.
- 72. Ge J, Tian A-X, Wang Q-S, et al. The GSTP1 105Val allele increases breast cancer risk and aggressiveness but enhances response to cyclophosphamide chemotherapy in North China. 2013;8(6):e67589.
- 73. Gautam P, Feroz Z, Tiwari S, Vijayraghavalu S, Shukla GC, Kumar M. Investigating the Role of Glutathione S- Transferase Genes, Histopathological and Molecular Subtypes, Gene-Gene Interaction and Its Susceptibility to Breast Carcinoma in Ethnic North-Indian Population. Asian Pac J Cancer Prev. 2022;23(10):3481-90. https://doi.org/10.31557/APJCP.2022.23.10.3481
- 74. Wang H, Gao X, Zhang X, et al. Glutathione S-transferase gene polymorphisms are associated with an improved treatment response to cisplatin-based chemotherapy in patients with non-small cell lung Cancer (NSCLC): a meta-analysis. 2018;24:7482.
- 75. Pacholak LM, Amarante MK, Guembarovski RL, Watanabe MAE, Panis CJMBR. Polymorphisms in GSTT1 and GSTM1 genes as possible risk factors for susceptibility to breast cancer development and their influence in chemotherapy response: a systematic review. 2020;47(7):5495-5501.
- 76. Pfeffer CM, Singh ATJIjoms. Apoptosis: a target for anticancer therapy. 2018;19(2):448.
- 77. Xu JF, Wan Y, Tang F, et al. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol. 2021;12:720474. https://doi.org/10.3389/fphar.2021.720474
- 78. Tummers B, Green DRJIr. Caspase-8: regulating life and death. 2017;277(1):76-89.
- 79. Kim R, Tanabe K, Uchida Y, et al. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. 2002;50(5):343-52.
- 80. Bai L, Wang SJArom. Targeting apoptosis pathways for new cancer therapeutics. 2014;65:139-55.
- 81. Li Y, Li Z. Potential Mechanism Underlying the Role of Mitochondria in Breast Cancer Drug Resistance and Its Related Treatment Prospects. Front Oncol. 2021;11:629614. https://doi.org/10.3389/fonc.2021.629614
- 82. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi NJBri. Apoptosis and molecular targeting therapy in cancer. 2014;2014
- 83. Fu Z, Zhao PY, Yang XP, et al. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol. 2023;14:1094020. https://doi.org/10.3389/fphar.2023.1094020
- 84. Warren CF, Wong-Brown MW, Bowden NAJCd, disease. BCL-2 family isoforms in apoptosis and cancer. 2019;10(3):1-12.
- 85. Mortenson M, Schlieman M, Virudalchalam S, Bold RJJoSR. Overexpression of BCL-2 results in activation of the AKT/NF-kB Cell survival pathway. 2003;114(2):302.
- 86. Buchholz TA, Davis DW, McConkey DJ, et al. Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy. 2003;9(1):33-41.
- 87. Sjöström J, Blomqvist C, von Boguslawski K, et al. The predictive value of bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breast cancer. 2002;8(3):811-16.
- 88. Deng X, Kornblau SM, Ruvolo PP, May Jr WSJJM. Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. 2000;2000(28):30-7.
- 89. Post SM, Ma H, Malaney P, et al. AXL/MERTK inhibitor ONO-7475 potently synergizes with venetoclax and overcomes venetoclax resistance to kill FLT3-ITD acute myeloid leukemia. Haematologica. 2022;107(6):1311-22. https://doi.org/10.3324/haematol.2021.278369
- 90. Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci. Sep 28 2021;22(19):10442. https://doi.org/10.3390/ijms221910442
- 91. Niero EL, Rocha-Sales B, Lauand C, et al. The multiple facets of drug resistance: one history, different approaches. 2014;33(1):1-14.
- 92. Bukowski K, Kciuk M, Kontek RJIjoms. Mechanisms of multidrug resistance in cancer chemotherapy. 2020;21(9):3233.
- 93. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RAJNRC. DNA repair pathways as targets for cancer therapy. 2008;8(3):193-204.
- 94. Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol. 2020;11:629266. https://doi.org/10.3389/fphar.2020.629266
- 95. Chatterjee N, Walker GCJE, mutagenesis m. Mechanisms of DNA damage, repair, and mutagenesis. 2017;58(5):235-63.
- 96. Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6(1):254. https://doi.org/10.1038/s41392-021-00648-7
- 97. Jones M, Beuron F, Borg A, et al. Cryo-EM structures of the XPF-ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. 2020;11(1):1-14.

- 98. Youn C-K, Kim M-H, Cho H-J, et al. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. 2004;64(14):4849-57.
- 99. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFMJC. DNA repair pathways and cisplatin resistance: an intimate relationship. 2018;73
- 100. Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non–small-cell lung cancer and cisplatin-based adjuvant chemotherapy. 2006;355(10):983-91.
- 101.Baiomy MAE, El Kashef WFJAPjocpA. ERCC1 expression in metastatic triple negative breast cancer patients treated with platinum-based chemotherapy. 2017;18(2):507.
- 102.Yu W, Zhang L, Wei Q, Shao AJFio. O6-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. 2020;9:1547.
- 103. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. NIH Public Access. 2009:351.
- 104. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard AJG, development. An operational definition of epigenetics. 2009;23(7):781-3.
- 105. Bozzini N, Avnet S, Baldini N, Cortini M. Epigenetic Regulation Mediated by Sphingolipids in Cancer. International Journal of Molecular Sciences. 2023;24(6):5294.
- 106. Quagliano A, Gopalakrishnapillai A, Barwe SPJFio. Understanding the mechanisms by which epigenetic modifiers avert therapy resistance in cancer. 2020;10:992.
- 107. Jurkowska RZ, Jurkowski TP, Jeltsch AJC. Structure and function of mammalian DNA methyltransferases. 2011;12(2):206-222.
- 108.Mazloumi Z, Farahzadi R, Rafat A, et al. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol. 2022;125:104757. https://doi.org/10.1016/j.yexmp.2022.104757
- 109.Zeller C, Dai W, Steele NL, et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. 2012;31(42):4567-76.
- 110. Deaton AM, Bird AJG, development. CpG islands and the regulation of transcription. 2011;25(10):1010-22.
- 111.Muller D, Gyorffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188722. https://doi.org/10.1016/j.bbcan.2022.188722
- 112.Majchrzak-Celinska A, Warych A, Szoszkiewicz M. Novel Approaches to Epigenetic Therapies: From Drug Combinations to Epigenetic Editing. Genes (Basel). 2021;12(2):28. https://doi.org/10.3390/genes12020208
- 113. Sumarpo A, Ito K, Saiki Y, et al. Genetic and epigenetic aberrations of ABCB1 synergistically boost the acquisition of taxane resistance in esophageal squamous cancer cells. 2020;526(3):586-91.
- 114. Ohata Y, Shimada S, Akiyama Y, et al. Acquired resistance with epigenetic alterations under long-term antiangiogenic therapy for hepatocellular carcinoma. 2017;16(6):1155-65.
- 115.Bhatla T, Wang J, Morrison DJ, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. 2012;119(22):5201-10.
- 116. Kim SH, Kang BC, Seong D, et al. EPHA3 Contributes to Epigenetic Suppression of PTEN in Radioresistant Head and Neck Cancer. Biomolecules. 2021;11(4):599. https://doi.org/10.3390/biom11040599
- 117. Issa ME, Takhsha FS, Chirumamilla CS, Perez-Novo C, Berghe WV, Cuendet MJCE. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. 2017;9(1):1-13.
- 118.Zhan Y, Li Y, Guan B, et al. Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. 2017;8(44):76656.
- 119. Wei J-W, Huang K, Yang C, Kang C-SJOr. Non-coding RNAs as regulators in epigenetics. 2017;37(1):3-9.
- 120.0'Brien J, Hayder H, Zayed Y, Peng CJFie. Overview of microRNA biogenesis, mechanisms of actions, and circulation. 2018;9:402.
- 121. Tang JY, Chuang YT, Shiau JP, et al. Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. 2022;11(19):2940. https://doi.org/10.3390/cells11192940
- 122.Ling H, Fabbri M, Calin GAJNrDd. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. 2013;12(11):847-65.
- 123. Arun G, Diermeier SD, Spector DLJTimm. Therapeutic targeting of long non-coding RNAs in cancer. 2018;24(3):257-.
- 124.Xie W, Chu M, Song G, et al. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol. 2022;83:303-18. https://doi.org/10.1016/j.semcancer.2020.11.004
- 125.Liberti MV, Locasale JWJTibs. The Warburg effect: how does it benefit cancer cells? 2016;41(3):211-218.
- 126. Schwartz L, T Supuran C, O Alfarouk KJA-CAIMC. The Warburg effect and the hallmarks of cancer. 2017;17(2):164-170.
- 127. Vander Heiden MG, Cantley LC, Thompson CBJs. Understanding the Warburg effect: the metabolic requirements of cell proliferation. 2009;324(5930):1029-33.
- 128.Zhou Y, Tozzi F, Chen J, et al. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. 2012;72(1):304-14.
- 129. Schneider V, Krieger ML, Bendas G, Jaehde U, Kalayda GVJJJoBIC. Contribution of intracellular ATP to cisplatin resistance of tumor cells. 2013;18(2):165-174.
- 130.Cao Y, Chen E, Wang X, Song J, Zhang H, Chen X. An emerging master inducer and regulator for epithelial-mesenchymal transition and tumor metastasis: extracellular and intracellular ATP and its molecular functions and therapeutic potential.

- Cancer Cell Int. 2023;23(1):20. https://doi.org/10.1186/s12935-023-02859-0
- 131.Zhang H, Steed A, Co M, Chen X. Cancer stem cells, epithelial-mesenchymal transition, ATP and their roles in drug resistance in cancer. Cancer Drug Resist. 2021;4(3):684-709. https://doi.org/10.20517/cdr.2021.32
- 132. Wang X, Li Y, Qian Y, et al. Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase. 2017;8(50):87860.
- 133. Wilhelm K, Ganesan J, Müller T, et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X 7 R. 2010;16(12):1434.
- 134.Qian Y, Wang X, Li Y, Cao Y, Chen XJMCR. Extracellular ATP a new player in cancer metabolism: NSCLC cells internalize ATP in vitro and in vivo using multiple endocytic mechanisms. 2016;14(11):1087-96.
- 135. Song J, Qian Y, Evers M, Nielsen CM, Chen X. Cancer Stem Cell Formation Induced and Regulated by Extracellular ATP and Stanniocalcin-1 in Human Lung Cancer Cells and Tumors. Int J Mol Sci. 2022;23(23):14770. https://doi.org/10.3390/ijms232314770
- 136. Xiao F, Li J, Huang K, et al. Macropinocytosis: mechanism and targeted therapy in cancers. Am J Cancer Res. 2021;11(1):14-30.
- 137.Du Z, Lovly CMJMc. Mechanisms of receptor tyrosine kinase activation in cancer. 2018;17(1):1-13.
- 138. Yoganathan S, Alagaratnam A, Acharekar N, Kong JJC. Ellagic Acid and Schisandrins: Natural Biaryl Polyphenols with Therapeutic Potential to Overcome Multidrug Resistance in Cancer. 2021;10(2):458.
- 139. Wang Z, Xie C, Huang Y, Lam CWK, Chow MSJPr. Overcoming chemotherapy resistance with herbal medicines: past, present and future perspectives. 2014;13(1):323-37.
- 140.Guo Q, Li X, Cui M-N, et al. CD13-A key player in multi-drug resistance in cancer chemotherapy. 2020.
- 141. Kita DH, Guragossian N, Zattoni IF, et al. Mechanistic basis of breast cancer resistance protein inhibition by new indeno [1, 2-b] indoles. 2021;11(1):1-16.
- 142.To KK, Wu X, Yin C, et al. Reversal of multidrug resistance by Marsdenia tenacissima and its main active ingredients polyoxypregnanes. J Ethnopharmacol. 2017;203:110-19. https://doi.org/10.1016/j.jep.2017.03.051
- 143.Rodríguez-Chávez JL, Mendez-Cuesta CA, Ramirez-Apan T, et al. Chemo-sensitizing activity of natural cadinanes from Heterotheca inuloides in human uterine sarcoma cells and their in silico interaction with ABC transporters. 2019;91:103091.
- 144. Gote V, Nookala AR, Bolla PK, Pal DJIjoms. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. 2021;22(9):4673.
- 145. Guo Q, Cao H, Qi X, et al. Research progress in reversal of tumor multi-drug resistance via natural products. 2017;17(11):1466-76.
- 146. Yuan R, Hou Y, Sun W, et al. Natural products to prevent drug resistance in cancer chemotherapy: a review. 2017;1401(1):19-27.
- 147. Chang Y-T, Wang CC, Wang J-Y, et al. Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells. 2019;53:252-62.
- 148. Hano M, Tomášová L, Šereš M, Pavlíková L, Breier A, Sulová ZJM. Interplay between P-glycoprotein expression and resistance to endoplasmic reticulum stressors. 2018;23(2):337.
- 149.Teng Y-N, Sheu M-J, Hsieh Y-W, Wang R-Y, Chiang Y-C, Hung C-CJP. β-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function. 2016;23(3):316-23.
- 150. Waghray D, Zhang QJJomc. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment: Miniperspective. 2017;61(12):5108-21.
- 151.Dei S, Braconi L, Trezza A, et al. Modulation of the spacer in N, N-bis (alkanol) amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators. 2019;172:71-94.
- 152. Chang Y-T, Lin Y-C, Sun L, et al. Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein. 2020:71:153239.
- 153.Chen H-J, Chung Y-L, Li C-Y, et al. Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of P-glycoprotein function. Molecules. 2018;23(12):3055. https://doi.org/10.3390/molecules23123055
- 154.Umsumarng S, Pitchakarn P, Yodkeeree S, et al. Modulation of P-glycoprotein by Stemona alkaloids in human multidrug resistance leukemic cells and structural relationships. Phytomedicine. 2017;34:182-190.
- 155. Chang Y-T, Lin Y-C, Sun L, et al. Wilforine resensitizes multidrug resistant cancer cells via competitive inhibition of P-glycoprotein. Phytomedicine. 2020;71:153239.
- 156. Chang Y-T, Wang CCN, Wang J-Y, et al. Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells. Phytomedicine. 2019;53:252-262.
- 157.Li H, Krstin S, Wink M. Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. Phytomedicine. 2018;50:213-222.
- 158. Tang J, Ji H, Ren J, Li M, Zheng N, Wu L. Solid lipid nanoparticles with TPGS and Brij 78: a co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multidrug resistance in vitro. Oncology letters. 2017;13(1):389-95.
- 159.Teng Y-N, Wang CCN, Liao W-C, Lan Y-H, Hung C-C. Caffeic acid attenuates multi-drug resistance in cancer cells by inhibiting efflux function of human P-glycoprotein. Molecules. 2020;25(2):247.
- 160.Xu W, Xie S, Chen X, Pan S, Qian H, Zhu X. Effects of Quercetin on the Efficacy of Various Chemotherapeutic Drugs in Cervical

- Cancer Cells. Drug Des Devel Ther. 2021;15:577-88. https://doi.org/10.2147/DDDT.S291865
- 161. Khonkarn R, Daowtak K, Okonogi S. Chemotherapeutic efficacy enhancement in P-gp-Overexpressing cancer cells by flavonoid-loaded polymeric micelles. Aaps Pharmscitech. 2020;21:1-12.
- 162. Shastrala K, Kalam S, Damerakonda K, et al. Synthesis, characterization, and pharmacological evaluation of some metal complexes of quercetin as P-gp inhibitors. Future Journal of Pharmaceutical Sciences. 2021;7(1):1-13.
- 163. Singh A, Patel SK, Kumar P, et al. Quercetin acts as a P-gp modulator via impeding signal transduction from nucleotide-binding domain to transmembrane domain. Journal of Biomolecular Structure and Dynamics. 2020:1-9.
- 164. Nair B, Anto RJ, Sabitha M, Nath LR. Kaempferol-Mediated Sensitization Enhances Chemotherapeutic Efficacy of Sorafenib Against Hepatocellular Carcinoma: An In Silico and In Vitro Approach. Advanced Pharmaceutical Bulletin. 2020;10(3):472.
- 165. Peng S, Wang J, Lu C, et al. Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncology Letters. 2021;21(3):1-1.
- 166. Teng X, Wang SY, Shi YQ, et al. The role of emodin on cisplatin resistance reversal of lung adenocarcinoma A549/DDP cell. Anti-cancer Drugs. 2021; ;32(9):939-49. https://doi.org/10.1097/cad.000000000001086
- 167.Zhang Q, Feng Y, Kennedy DJC, Sciences ML. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? 2017;74(5):777-801.
- 168. Hamed AR, Abdel-Azim NS, Shams KA, Hammouda FMJBotNRC. Targeting multidrug resistance in cancer by natural chemosensitizers. 2019;43(1):1-14.
- 169. Dallavalle S, Dobričić V, Lazzarato L, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. 2020;50:100682.
- 170.Syed SB, Arya H, Fu I-H, et al. Targeting P-glycoprotein: Investigation of piperine analogs for overcoming drug resistance in cancer. 2017;7(1):1-18.
- 171. Turrini E, Sestili P, Fimognari CJT. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. 2020;12(12):747.
- 172. Zhang Z-L, Jiang Q-C, Wang S-RJBC. Schisandrin A reverses doxorubicin-resistant human breast cancer cell line by the inhibition of P65 and Stat3 phosphorylation. 2018;25(2):233-42.
- 173.Tinoush B, Shirdel I, Wink MJFiP. Phytochemicals: Potential Lead Molecules for MDR Reversal. 2020;11:832. https://doi.org/10.3389/fphar.2020.00832
- 174. Nabekura TJT. Overcoming multidrug resistance in human cancer cells by natural compounds. 2010;2(6):1207-24.
- 175.Zhang Y-K, Wang Y-J, Gupta P, Chen Z-SJTAj. Multidrug resistance proteins (MRPs) and cancer therapy. 2015;17(4):802-12.
- 176.El-Readi MZ, Eid S, Abdelghany AA, Al-Amoudi HS, Efferth T, Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. Phytomedicine. 2019;55:269-81.
- 177. Krisnamurti DGB, Wanandi SI, Louisa M. Curcumin increases the sensitivity of breast cancer cells to tamoxifen by inhibiting MRP2 mrna expression of efflux transporter MRP2. International Journal of Applied Pharmaceutics. 2019:88-90.
- 178.Louisa M, Wardhani BW. Quercetin improves the efficacy of sorafenib in triple negative breast cancer cells through the modulation of drug efflux transporters expressions. International Journal of Applied Pharmaceutics. 2019:129-34.
- 179. Tang H, Zeng L, Wang J, et al. Reversal of 5-fluorouracil resistance by EGCG is mediate by inactivation of TFAP2A/VEGF signaling pathway and down-regulation of MDR-1 and P-gp expression in gastric cancer. Oncotarget. 2017;8(47):82842.
- 180.La X, Zhang L, Li Z, Li H, Yang Y. (–)-Epigallocatechin Gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway. Journal of agricultural and food chemistry. 2019;67(9):2510-2518.
- 181. Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita TJPr, perspectives. Assessment of contribution of BCRP to intestinal absorption of various drugs using portal-systemic blood concentration difference model in mice. 2020;8(1):e00544.
- 182. Zhang Y-K, Zhang X-Y, Zhang G-N, et al. Selective reversal of BCRP-mediated MDR by VEGFR-2 inhibitor ZM323881. 2017;132:29-37.
- 183. Hee Choi Y, Yu A-MJCpd. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. 2014;20(5):793-807.
- 184.Chen L, Manautou JE, Rasmussen TP, Zhong X-bJAPSB. Development of precision medicine approaches based on interindividual variability of BCRP/ABCG2. 2019;9(4):659-74.
- 185. Mahmoud N, Saeed ME, Sugimoto Y, Klauck SM, Greten HJ, Efferth TJO. Cytotoxicity of nimbolide towards multidrug-resistant tumor cells and hypersensitivity via cellular metabolic modulation. 2018;9(87):35762.
- 186. Ding Y, He J, Huang J, et al. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. International journal of oncology. 2019;54(6):1995-2004. https://doi.org/10.3892/ijo.2019.4777
- 187. Jaramillo AC, Saig FA, Cloos J, Jansen G, Peters GJJCDR. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? 2018;1(1):6-29.
- 188.Kulsoom B, Shamsi TS, Afsar NAJSr. Lung resistance-related protein (LRP) predicts favorable therapeutic outcome in Acute Myeloid Leukemia. 2019;9(1):1-11.
- 189. Tang YC, Zhang Y, Zhou J, et al. Ginsenoside Rg3 targets cancer stem cells and tumor angiogenesis to inhibit colorectal cancer progression in vivo. Int J Oncol. 2018;52(1):127-38. https://doi.org/10.3892/ijo.2017.4183
- 190. Nakhjavani M, Hardingham JE, Palethorpe HM, et al. Ginsenoside Rg3: Potential Molecular Targets and Therapeutic Indication

- in Metastatic Breast Cancer. Medicines (Basel). 2019;6(1):17. https://doi.org/10.3390/medicines6010017
- 191.Wang P, Yang HL, Yang YJ, Wang L, Lee SCJE-BC, Medicine A. Overcome cancer cell drug resistance using natural products. 2015;2015:767136. https://doi.org/10.1155/2015/767136
- 192. Tang XY, Tang YX, Xu P, Zhou HY, Han L. [Effect of Peimine on ERCC1 mRNA and LRP Expressions of A549/DDP Multidrug Resistance Cell Line]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2015;35(12):1490-4.
- 193. Mackay HJ, Twelves CJ. Targeting the protein kinase C family: are we there yet? Nature Reviews Cancer. 2007;7(7):554-62.
- 194. Swannie HC, Kaye SB. Protein kinase C inhibitors. Current oncology reports. 2002;4(1):37-46.
- 195. Newton AC. Protein kinase C: structure, function, and regulation. Journal of biological chemistry. 1995;270:28495-8.
- 196. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992;258 (5082):607-14.
- 197. Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Elsevier; 36-52.
- 198.Zhao L-J, Xu H, Qu J-W, Zhao W-Z, Zhao Y-B, Wang J-H. Modulation of drug resistance in ovarian cancer cells by inhibition of protein kinase C-alpha (PKC-α) with small interference RNA (siRNA) agents. Asian Pacific Journal of Cancer Prevention. 2012;13(8):3631-6.
- 199. Filomenko R, Poirson-Bichat F, Billerey C, et al. Atypical protein kinase C ζ as a target for chemosensitization of tumor cells. Cancer research. 2002;62(6):1815-21.
- 200.Gollapudi S, Patel K, Jain V, Gupta S. Protein kinase C isoforms in multidrug resistant P388/ADR cells: a possible role in daunorubicin transport. Cancer letters. 1992;62(1):69-75.
- 201.Nabha SM, Glaros S, Hong M, et al. Upregulation of PKC-δ contributes to antiestrogen resistance in mammary tumor cells. Oncogene. 2005;24(19):3166-76.
- 202. Fine RL, Chambers TC, Sachs CW. P-glycoprotein, multidrug resistance and protein kinase C. Stem cells. 1996;14(1):47-55.
- 203. Cartee L, Kucera GL. Protein kinase C modulation and anticancer drug response. Cancer investigation. 2000;18(8):731-9.
- 204. Gschwendt M, Kittstein W, Marks F. Protein kinase C activation by phorbol esters: do cysteine-rich regions and pseudosubstrate motifs play a role? Trends in biochemical sciences. 1991;16:167-9.
- 205. Yang J-M, Chin K-V, Hait WN. Interaction of P-glycoprotein with protein kinase C in human multidrug resistant carcinoma cells. Cancer research. 1996;56(15):3490-4.
- 206.Conseil G, Perez-Victoria JM, Jault J-M, et al. Protein kinase C effectors bind to multidrug ABC transporters and inhibit their activity. Biochemistry. 2001;40(8):2564-71.
- 207.Roy M, Mukherjee S, Sarkar R, Biswas J. Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-κB and HDAC in breast cancer. Therapeutic Delivery. 2011/10/01 2011;2(10):1275-93. https://doi.org/10.4155/tde.11.97
- 208. Maurya AK, Vinayak M. Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Molecular Biology Reports. 2015;42(9):1419-9.
- 209.Russo M, Palumbo R, Mupo A, et al. Flavonoid quercetin sensitizes a CD95-resistant cell line to apoptosis by activating protein kinase Cα. Oncogene. 2003;22(21):3330-42. https://doi.org/10.1038/sj.onc.1206493
- 210. Pljesa-Ercegovac M, Savic-Radojevic A, Matic M, et al. Glutathione transferases: potential targets to overcome chemoresistance in solid tumors. International Journal of Molecular Sciences. 2018;19(12):3785.
- 211.0'Brien ML, Tew KD. Glutathione and related enzymes in multidrug resistance. European journal of cancer. 1996;32(6):967-78.
- 212. Singh RR, Reindl KM. Glutathione S-Transferases in Cancer. Antioxidants. 2021;10(5):701.
- 213. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. International journal of molecular sciences. 2020;21(9):3233. https://doi.org/10.3390/ijms21093233
- 214.Osborne MJ, de Oliveira LC, Volpon L, Zahreddine HA, Borden KLB. Overcoming drug resistance through the development of selective inhibitors of UDP-glucuronosyltransferase enzymes. Journal of molecular biology. 2019;431(2):258-72.
- 215.Wu J, Henderson C, Feun L, et al. Phase II study of darinaparsin in patients with advanced hepatocellular carcinoma. Investigational new drugs. 2010;28(5):670-6.
- 216.Shen H, Kauvar L, Tew KD. Importance of glutathione and associated enzymes in drug response. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 1997;9(6-7):295-302.
- 217.Al Fayi M, Alamri A, Rajagopalan P. IOX-101 Reverses Drug Resistance Through Suppression of Akt/mTOR/NF-κB Signaling in Cancer Stem Cell-Like, Sphere-Forming NSCLC Cell. Oncology research. 2020;28(2):177.
- 218.Du Y, Zheng Y, Yu CX, et al. The Mechanisms of Yu Ping Feng San in Tracking the Cisplatin-Resistance by Regulating ATP-Binding Cassette Transporter and Glutathione S-Transferase in Lung Cancer Cells. Front Pharmacol. 2021;12:678126. https://doi.org/10.3389/fphar.2021.678126
- 219.Li J, Ye T, Liu Y, et al. Transcriptional activation of Gstp1 by MEK/ERK signaling confers chemo-resistance to cisplatin in lung cancer stem cells. Frontiers in oncology. 2019;9:476.
- 220.Eid SY, Althubiti MA, Abdallah ME, Wink M, El-Readi MZ. The carotenoid fucoxanthin can sensitize multidrug resistant cancer cells to doxorubicin via induction of apoptosis, inhibition of multidrug resistance proteins and metabolic enzymes. Phytomedicine. 2020;77:153280.

- 221. Wang Z, Liang S, Lian X, et al. Identification of proteins responsible for adriamycin resistance in breast cancer cells using proteomics analysis. Scientific reports. 2015;5(1):1-11.
- 222. Yang M, Li Y, Shen X, et al. CLDN6 promotes chemoresistance through GSTP1 in human breast cancer. Journal of Experimental & Clinical Cancer Research. 2017;36(1):1-15.
- 223. Cheng S-Y, Chen N-F, Wen Z-H, et al. Glutathione S-Transferase M3 Is Associated with Glycolysis in Intrinsic Temozolomide-Resistant Glioblastoma Multiforme Cells. International Journal of Molecular Sciences. 2021;22(13):7080.
- 224. Fruehauf JP, Brem H, Brem S, et al. In vitro drug response and molecular markers associated with drug resistance in malignant gliomas. Clinical Cancer Research. 2006;12(15):4523-32.
- 225.Geng M, Wang L, Chen X, Cao R, Li P. The association between chemosensitivity and Pgp, GST-π and Topo II expression in gastric cancer. Diagnostic pathology. 2013;8(1):1-5.
- 226.Liu C-z, Liu W, Zheng Y, et al. PTEN and PDCD4 are Bona Fide Targets of microRNA-21 in Human Cholangiocarcinoma △. Chinese Medical Sciences Journal. 2012;27(2):65-72.
- 227. Keyvani-Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells' multidrug resistance: an update. Phytotherapy Research. 2020;34(10):2534-56.
- 228.Andjelkovic T, Pesic M, Bankovic J, Tanic N, Markovic ID, Ruzdijic S. Synergistic effects of the purine analog sulfinosine and curcumin on the multidrug resistant human non-small cell lung carcinoma cell line (NCI-H460/R). Cancer biology & therapy. 2008;7(7):1024-32. https://doi.org/10.4161/cbt.7.7.6036
- 229. Depeille P, Cuq P, Passagne I, Evrard A, Vian L. Combined effects of GSTP1 and MRP1 in melanoma drug resistance. British journal of cancer. 2005;93(2):216-23.
- 230. Wang W, Sun Y-p, Huang X-z, et al. Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathion depletion and MRP1 downregulation. Biochemical pharmacology. 2010;79(8):1134-40.
- 231. Chen Y-Y, Li J, Hu J-D, et al. Reversing effects of emodin on multidrug resistance in resistant HL-60/ADR cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2013;21(6):1413-22.
- 232.Ou B-n, Tang H-h, Zhang H-y, Liang G, Wei Y. Preliminary study of the mechanism of reversal effect of emodin in KBV200 cells in vitro [J]. Shandong Medical Journal. 2011;24
- 233. Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, et al. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB life. 2020;72(5):855-71.
- 234.Alqarni MH, Foudah AI, Muharram MM, Labrou NE. The Interaction of the Flavonoid Fisetin with Human Glutathione Transferase A1-1. Metabolites. 2021;11(3):190.
- 235.Du Y, Zheng Y, Yu CX, et al. The mechanisms of Yu Ping Feng San in tracking the cisplatin-resistance by regulating ATP-binding cassette transporter and glutathione S-transferase in lung cancer cells. Front Pharmacol. 2021;12
- 236. Jin L, Xu M, Luo X-H, Zhu X-F. Stephania tetrandra and ginseng-containing Chinese herbal formulation NSENL reverses cisplatin resistance in lung cancer xenografts. The American journal of Chinese medicine. 2017;45(02):385-401.
- 237.Liu C-M, Kao C-L, Tseng Y-T, Lo Y-C, Chen C-Y. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules. 2017;22(9):1477.
- 238. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. OncoTargets and therapy. 2019;12:5751-5765. https://doi.org/10.2147/ott.s208924
- 239. Martin LJ. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Marine drugs. 2015;13(8):4784-98.
- 240.Eid SY, El-Readi MZ, Wink M. Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters. Phytomedicine. 2012;19(11):977-87.
- 241. Wang F, Lu C-H, Willner I. From cascaded catalytic nucleic acids to enzyme—DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chemical reviews. 2014;114(5):2881-941.
- 242.Liu LF. DNA topoisomerase poisons as antitumor drugs. Annual review of biochemistry. 1989;58(1):351-75.
- 243. Ganguly A, Das B, Roy A, et al. Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species—mediated apoptotic topoisomerase I–DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death. Cancer research. 2007;67(24):11848-58.
- 244. Wink M. Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. The Alkaloids: Chemistry and Biology. 2007;64:1-47.
- 245.El-Readi MZ, Al-Abd AM, Althubiti MA, et al. Multiple Molecular Mechanisms to Overcome Multidrug Resistance in Cancer by Natural Secondary Metabolites. Front Pharmacol. 2021;12:942.
- 246.Li T-K, Liu LF. Tumor cell death induced by topoisomerase-targeting drugs. Annual review of pharmacology and toxicology. 2001;41(1):53-77. https://doi.org/10.1146/annurev.pharmtox.41.1.53
- 247. Austin CA, Sng J-H, Patel S, Fisher LM. Novel HeLa topoisomerase II is the IIβ isoform: complete coding sequence and homology with other type II topoisomerases. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1993;1172(3):283-291.
- 248.Chen W, Qiu J, Shen Y. Topoisomerase IIα, rather than IIβ, is a promising target in development of anti-cancer drugs. Drug discoveries & therapeutics. 2012;6(5):230-237.

- 249. Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FH. Proliferation-and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell growth & differentiation: the molecular biology journal of the American Association for Cancer Research. 1991;2(4):209-14.
- 250. Parchment RE, Pessina A. Topoisomerase I inhibitors and drug resistance. Cytotechnology. 1998;27(1):149-64.
- 251.Infante Lara L, Fenner S, Ratcliffe S, et al. Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic acids research. 2018;46(5):2218-33.
- 252.Ma Z, Hano Y, Nomura T, Chen Y. Novel quinazoline—quinoline alkaloids with cytotoxic and DNA topoisomerase II inhibitory activities. Bioorganic & medicinal chemistry letters. 2004;14(5):1193-6. https://doi.org/10.1016/j.bmcl.2003.12.048
- 253.Lin J-P, Lu H-F, Lee J-H, et al. (-)-Menthol Inhibits DNA Topoisomerases I, II α and β and Promotes NF-Î B expression in Human Gastric Cancer SNU-5 Cells. Anticancer research. 2005;25(3B):2069-74.
- 254.Makhey D, Gatto B, Yu C, Liu A, Liu LF, LaVoie EJ. Coralyne and related compounds as mammalian topoisomerase I and topoisomerase II poisons. Bioorganic & medicinal chemistry. 1996;4(6):781-91.
- 255.Meng W, Ze-Fa LIU, Hua T, Bao-An C. Application of alkaloids in reversing multidrug resistance in human cancers. Chinese journal of natural medicines. 2018;16(8):561-71.
- 256.Xue X, Qu X-J, Gao Z-H, et al. Riccardin D, a novel macrocyclic bisbibenzyl, induces apoptosis of human leukemia cells by targeting DNA topoisomerase II. Investigational new drugs. 2012;30(1):212-22.
- 257. Greco O, Marples B, Joiner MC, Scott SD. How to overcome (and exploit) tumor hypoxia for targeted gene therapy. Journal of cellular physiology. 2003;197(3):312-25.
- 258. Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Molecular medicine today. 2000;6(4):157-162.
- 259.Liu L, Ning X, Sun L, et al. Hypoxia-inducible factor- 1α contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer science. 2008;99(1):121-128.
- 260.Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of applied physiology. 2000;
- 261. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences. 1998;95(14):7987-92.
- 262.Xu S, Yu C, Ma X, et al. IL-6 promotes nuclear translocation of HIF-1 α to aggravate chemoresistance of ovarian cancer cells. European Journal of Pharmacology. 2021;894:173817.
- 263.Jin X, Gong L, Peng Y, Li L, Liu G. Enhancer-bound Nrf2 licenses HIF-1α transcription under hypoxia to promote cisplatin resistance in hepatocellular carcinoma cells. Aging (Albany NY). 2021;13(1):364.
- 264. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging. 2020;12(13):12493-503. https://doi.org/10.18632/aging.103579
- 265.Lei-Tao SUN, Zhang L-Y, Fei-Yu S, Min-He S, Shan-Ming R. Jiedu Sangen decoction inhibits chemoresistance to 5-fluorouracil of colorectal cancer cells by suppressing glycolysis via PI3K/AKT/HIF-1α signaling pathway. Chinese Journal of Natural Medicines. 2021;19(2):143-152.
- 266. Stoeltzing O, McCarty MF, Wey JS, et al. Role of hypoxia-inducible factor 1α in gastric cancer cell growth, angiogenesis, and vessel maturation. Journal of the National Cancer Institute. 2004;96(12):946-56.
- 267.McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. Journal of Biological Chemistry. 2005;280(8):6561-9.
- 268. Wang G, Xie G, Han L, et al. Involvement of hypoxia-inducible factor-1 alpha in the upregulation of P-glycoprotein in refractory epilepsy. Neuroreport. 2019;30(17):1191-6.
- 269.Lv Y, Zhao S, Han J, Zheng L, Yang Z, Zhao L. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer. OncoTargets and therapy. 2015;8:1941.
- 270. Wen Y, Zhao R-Q, Zhang Y-K, et al. Effect of Y6, an epigallocatechin gallate derivative, on reversing doxorubicin drug resistance in human hepatocellular carcinoma cells. Oncotarget. 2017;8(18):29760.
- 271. Kathawala RJ, Gupta P, Ashby Jr CR, Chen Z-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug resistance updates. 2015;18:1-17.
- 272.Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. The aging male: the official journal of the International Society for the Study of the Aging Male. Jun 8 2020:1-9. https://doi.org/10.1080/13685538.2020.1774748
- 273. Hassan S, Peluso J, Chalhoub S, et al. Quercetin potentializes the respective cytotoxic activity of gemcitabine or doxorubicin on 3D culture of AsPC-1 or HepG2 cells, through the inhibition of HIF-1 α and MDR1. PLOS ONE. 2020;15(10):e0240676. https://doi.org/10.1371/journal.pone.0240676
- 274.Mitani T, Ito Y, Harada N, et al. Resveratrol Reduces the Hypoxia-Induced Resistance to Doxorubicin in Breast Cancer Cells. Journal of Nutritional Science and Vitaminology. 2014;60(2):122-128. https://doi.org/10.3177/jnsv.60.122
- 275.Zhang C, Deng J, Liu D, et al. Nuciferine inhibits proinflammatory cytokines via the PPARs in LPS-induced RAW264. 7 cells.

Molecules. 2018;23(10):2723.

- 276.Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. Journal of Experimental & Clinical Cancer Research. 2019;38(1):1-15.
- 277. Shu G, Qiu Y, Hao J, Fu Q, Deng X. Nuciferine alleviates acute alcohol-induced liver injury in mice: Roles of suppressing hepatic oxidative stress and inflammation via modulating miR-144/Nrf2/HO-1 cascade. Journal of Functional Foods. 2019;58:105-113.
- 278.Liu R-M, Xu P, Chen Q, Feng S-I, Xie Y. A multiple-targets alkaloid nuciferine overcomes paclitaxel-induced drug resistance in vitro and in vivo. Phytomedicine. 2020;79:153342.
- 279.Xu T, Guo P, He Y, et al. Application of curcumin and its derivatives in tumor multidrug resistance. Phytotherapy Research. 2020;34(10):2438-58.
- 280. Costea T, Vlad OC, Miclea L-C, Ganea C, Szöllősi J, Mocanu M-M. Alleviation of multidrug resistance by flavonoid and non-flavonoid compounds in breast, lung, colorectal and prostate cancer. International journal of molecular sciences. 2020;21(2):401.
- 281. Talib WH, Alsayed AR, Barakat M, Abu-Taha MI, Mahmod AI. Targeting drug chemo-resistance in cancer using natural products. Biomedicines. 2021;9(10):1353. https://doi.org/10.3390/biomedicines9101353

